Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptively Secure Broadcast Encryption with Dealership

  • Conference paper
  • First Online:
Information Security and Cryptology – ICISC 2016 (ICISC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10157))

Included in the following conference series:

Abstract

In this paper, we put forward first adaptively chosen plaintext attack (CPA) secure broadcast encryption with dealership (BED) scheme in standard model. We achieve adaptive security in the standard model under reasonable assumption in contrast to semi-static security of Gritti et al. and selective security in random oracle model by Acharya et al. Our scheme also achieves privacy in form of hiding the group of subscribed users from broadcaster and supports maximum number of accountability under reasonable assumptions. Unlike the scheme of Gritti et al., our scheme does not need to rely on users’ response to detect the dishonest dealer like recently proposed scheme of Acharya et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acharya, K., Dutta, R.: Secure and efficient construction of broadcast encryption with dealership. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 277–295. Springer, Heidelberg (2016). doi:10.1007/978-3-319-47422-9_16

    Chapter  Google Scholar 

  2. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). doi:10.1007/11889663_4

    Chapter  Google Scholar 

  3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639_26

    Chapter  Google Scholar 

  4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218_16

    Chapter  Google Scholar 

  5. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_12

    Chapter  Google Scholar 

  6. Camacho, P.: Fair exchange of short signatures without trusted third party. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 34–49. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36095-4_3

    Chapter  Google Scholar 

  7. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5_25

    Google Scholar 

  8. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2_12

    Chapter  Google Scholar 

  9. Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5_4

    Chapter  Google Scholar 

  10. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003). doi:10.1007/978-3-540-44993-5_5

    Chapter  Google Scholar 

  11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  12. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with Short Ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_10

    Chapter  Google Scholar 

  13. Gritti, C., Susilo, W., Plantard, T., Liang, K., Wong, D.S.: Broadcast encryption with dealership. Int. J. Inf. Secur. 15(3), 271–283 (2016)

    Article  Google Scholar 

  14. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: Membership encryption and its applications. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 219–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39059-3_15

    Chapter  Google Scholar 

  15. Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: 2010 IEEE Symposium on Security and Privacy, pp. 273–285. IEEE (2010)

    Google Scholar 

  16. Phan, D.-H., Pointcheval, D., Shahandashti, S.F., Strefler, M.: Adaptive cca broadcast encryption with constant-size secret keys and ciphertexts. Int. J. Inf. Secur. 12(4), 251–265 (2013)

    Article  MATH  Google Scholar 

  17. Ren, Y., Wang, S., Zhang, X.: Non-interactive dynamic identity-based broadcast encryption without random oracles. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 479–487. Springer, Heidelberg (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalesh Acharya .

Editor information

Editors and Affiliations

A General Decisional Diffie-Hellman Exponent Problem [3]

A General Decisional Diffie-Hellman Exponent Problem [3]

We give an overview of General Decisional Diffie-Hellman Exponent problem in symmetric case. Let \(\mathbb {S}=(p,\mathbb {G},\mathbb {G}_1,e)\) is a bilinear group system. Let g be generator of group \(\mathbb {G}\) and set \(g_1=e(g,g)\). Let \(P,Q\in \mathbb {F}_p[X_1,\ldots ,X_n]^s\) be two s tuple of n variate polynomials over \(\mathbb {F}_p\). We write \(P=(p_1,\ldots ,p_s),Q=(q_1,\ldots ,q_s)\) and impose that \(p_1=1,q_1=1\). For a set \(\varOmega \), a function \(h:\mathbb {F}_p\rightarrow \varOmega \) and a vector \((x_1,\ldots ,x_n)\in {\mathbb { F}_p}^n\) we write,

$$h(P(x_1,\ldots ,x_n))=(h(p_1(x_1,\ldots ,x_n)),\ldots ,h(p_s(x_1,\ldots ,x_n)))\in \varOmega ^s.$$

We use similar notation for the s-tuple Q. A polynomial \(f\in \mathbb {F}_p[X_1,\ldots ,X_n]\) depends on PQ if there exists \(a_{i,j},b_i(1\le i\le s)\in \mathbb { Z}_p\) such that

$$\begin{aligned} f=\sum _{1\le i,j\le s} a_{i,j}p_ip_j+\sum _{1\le i,j\le s} b_i q_i. \end{aligned}$$

Otherwise, f is independent of PQ. The (PQf)-General Decisional Diffie-Hellman Exponent ((PQf)-GDDHE) problem is defined as follows:

Definition 8

((PQf)-GDDHE:) Given \(H(x_1,\ldots ,x_n)=(g^{P(x_1,\ldots ,x_n)}, g_1^{Q(x_1,\ldots ,x_n)})\) and \(T \in \mathbb {G}_1\), decide whether \(T=g_1^{f(x_1,\ldots ,x_n)}\).

Boneh et al. [3] have proved that (PQf)-GDDHE is intractable, if f does not depend on PQ.

Hardness of l -wDABDHE assumption: Let us consider \(h=g^{\beta }\). If we formulate l-wDABDHE problem as the (PQf)-GDDHE problem then

$$\begin{aligned} P=(1,\alpha ,\alpha ^2,\ldots , \alpha ^l,\beta , \beta \alpha ^{l+2},\ldots ,\beta \alpha ^{2l}) \end{aligned}$$
$$\begin{aligned} Q=(1) \end{aligned}$$
$$\begin{aligned} f=(\beta \alpha ^{l+1}) \end{aligned}$$

Following the technique of [8], it is easy to show that f does not depend on PQ. So, cryptographic hardness of l-wDABDHE assumption follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Acharya, K., Dutta, R. (2017). Adaptively Secure Broadcast Encryption with Dealership. In: Hong, S., Park, J. (eds) Information Security and Cryptology – ICISC 2016. ICISC 2016. Lecture Notes in Computer Science(), vol 10157. Springer, Cham. https://doi.org/10.1007/978-3-319-53177-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53177-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53176-2

  • Online ISBN: 978-3-319-53177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics