Abstract
Side-channel attacks represent a serious threat to the security of encrypted firmware updates: if the secret key is leaked, then the firmware is exposed and can be replaced by malicious code or be stolen. In this work, we show how simple anomaly detection measures can effectively increase the security of encrypted firmware updates at minimum cost. Our method is based on the simple observation that firmware payloads have a specific structure (machine code), which can be easily verified at runtime in order to react to side-channel attacks. This enables performing proactive measures to limit the number of measurements that can be taken when a side-channel attack is detected. We tested the viability of our approach through simulations and verified its effectiveness in practice on a TI MSP430 microcontroller using a software implementation of AES. Our approach represents a step forward towards increasing the security of firmware updates against side-channel attacks: it effectively increases the security of firmware updates, has only negligible overhead in terms of code size and runtime, requires no modification to the underlying cryptographic implementations, and can be used in conjunction with countermeasures such as masking and re-keying to further enhance the side-channel resistance of a device.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CAESAR: Competition for authenticated encryption: security, applicability, and robustness, July 2012. http://competitions.cr.yp.to/caesar.html. This webpage is maintained by D. J. Bernstein
Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16763-3_5
Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_18
Belaïd, S., De Santis, F., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J.-M., Standaert, F.-X., Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs: cipher design principles and analysis. J. Cryptographic Eng. 4(3), 157–171 (2014)
Bellissimo, A., Burgess, J., Kevin, F., Secure software updates: disappointments and new challenges. In: Proceedings of the 1st USENIX Workshop on Hot Topics in Security, HOTSEC 2006, Berkeley, CA, USA, p. 7. USENIX Association (2006)
Bernstein, D.J.: Failures of secret-key cryptography. In: Invited Talk at FSE 2013 (20th International Workshop on Fast Software Encryption), Singapore (2013)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5_25
Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222–232 (1987)
Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_16
Guillen, O.M., Brederlow, R., Ledwa, R., Sigl, G.: Risk management in embedded devices using metering applications as example. In: Proceedings of the 9th Workshop on Embedded Systems Security, WESS 2014, pp. 6:1–6:9. ACM, New York (2014)
Texas Instruments Inc.: SLAU367E - MSP430FR59xx Family User’s Guide, August 2014
Texas Instruments Inc., Hall, J.H.: SLAA547A - C Implementation of Cryptographic Algorithms (Rev. A), July 2013
Krieg, A., Grinschgl, J., Steger, C., Weiss, R., Haid, J.: A side channel attack countermeasure using system-on-chip power profile scrambling. In: 2011 IEEE 17th International On-Line Testing Symposium (IOLTS), pp. 222–227. IEEE (2011)
Mangard, S., Oswald, E., Standaert, F.-X.: One for all-all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)
Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005). doi:10.1007/11545262_12
Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel security with efficient leakage-resilient PRFs. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 193–212. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_12
Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the importance of countermeasures. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 1–18. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27954-6_1
Moradi, A., Poschmann, A.: Lightweight cryptography and DPA countermeasures: a survey. In: Sion, R., Curtmola, R., Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol. 6054, pp. 68–79. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14992-4_7
O’Flynn, C., David Chen, Z.: Side channel power analysis of an aes-256 bootloader. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 750–755, May 2015
Patton, M., Gross, E., Chinn, R., Forbis, S., Walker, L., Chen, H.: Uninvited connections: a study of vulnerable devices on the Internet of Things (IoT). In: 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC), pp. 232–235, September 2014
Rudell, R.L.: Multiple-valued logic minimization for pla synthesis. Technical report, DTIC Document (1986)
De Santis, F., Rass, S.: On efficient leakage-resilient pseudorandom functions with hard-to-invert leakages. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 127–145. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16295-9_7
Sontrack. Logic Friday (version 1.1.4), November 2012. http://www.sontrak.com/
Tillich, S., Herbst, C.: Attacking state-of-the-art software countermeasures—a case study for AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 228–243. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_15
Trichina, E., De Seta, D., Germani, L.: Simplified adaptive multiplicative masking for AES. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003). doi:10.1007/3-540-36400-5_15
Veyrat-Charvillon, N., Standaert, F.-X.: Adaptive chosen-message side-channel attacks. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 186–199. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2_12
Acknowledgments
We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was partially funded by the German Federal Ministry of Education and Research (BMBF), project SIBASE, grant number 01IS13020A.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Guillen, O.M., De Santis, F., Brederlow, R., Sigl, G. (2017). Towards Side-Channel Secure Firmware Updates. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2016. Lecture Notes in Computer Science(), vol 10128. Springer, Cham. https://doi.org/10.1007/978-3-319-51966-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-51966-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51965-4
Online ISBN: 978-3-319-51966-1
eBook Packages: Computer ScienceComputer Science (R0)