Nothing Special   »   [go: up one dir, main page]

Skip to main content

Resource Constrained Job Scheduling with Parallel Constraint-Based ACO

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10142))

  • 1086 Accesses

Abstract

Hybrid methods are highly effective means of solving combinatorial optimization problems and have become increasingly popular. In particular, integrations of exact and incomplete methods have proved to be effective where the hybrid takes advantage of the relative performance of each individual method. However, these methods often require significant run-times to determine good feasible solutions. One way of reducing run-times is to parallelize these algorithms. For large NP-hard problems, parallelization must be done with care, since changes to the algorithm can affect its performance in unpredictable ways. In this paper we develop two parallel variants of constraint-based ACO and test them on a problem arising in the Australian mining industry. We demonstrate that parallelization significantly reduces run times with each parallel variant providing advantages with respect to feasibility and solution quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The CP solver maintains all the constraints in the system. A job j is posted to the solver and either success or failure is returned.

References

  1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS 1967 (Spring), pp. 483–485. ACM, New York (1967)

    Google Scholar 

  2. Ballestín, F., Trautmann, N.: An iterated-local-search heuristic for the resource-constrained weighted earliness-tardiness project scheduling problem. Int. J. Prod. Res. 46, 6231–6249 (2008)

    Article  MATH  Google Scholar 

  3. Blum, C.: Beam-ACO: hybridizing ant colony optimization with beam search: an application to open shop scheduling. Comput. Oper. Res. 32, 1565–1591 (2005)

    Article  MATH  Google Scholar 

  4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35, 268–308 (2003)

    Article  Google Scholar 

  5. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: notation, classification, models, and methods. Eur. J. Oper. Res. 112, 3–41 (1999)

    Article  MATH  Google Scholar 

  6. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation). The MIT Press, Cambridge (2007)

    Google Scholar 

  7. Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an ant colony optimization metaheuristic with OpenMP. In: Proceedings of the 3rd European Workshop on OpenMP of International Conference on Parallel Architectures and Compilation Techniques (EWOMP 2001) (2001)

    Google Scholar 

  8. Ellabib, I., Calamai, P., Basir, O.: Exchange strategies for multiple ant colony system. Inf. Sci. 177(5), 1248–1264 (2007)

    Article  Google Scholar 

  9. Ling, C., Hai-Ying, S., Shu, W.: A parallel ant colony algorithm on massively parallel processors and its convergence analysis for the travelling salesman problem. Inf. Sci. 199, 31–42 (2012). WOS: 000304221600003

    Article  MathSciNet  MATH  Google Scholar 

  10. López-Ibáñez, M., Blum, C., Thiruvady, D., Ernst, A.T., Meyer, B.: Beam-ACO based on stochastic sampling for makespan optimization concerning the TSP with time windows. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 97–108. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01009-5_9

    Chapter  Google Scholar 

  11. Marriott, K., Stuckey, P.: Programming with Constraints. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony optimization. Appl. Soft Comput. 11(8), 5181–5197 (2011)

    Article  Google Scholar 

  13. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. J. Parallel Distrib. Comput. 62(9), 1421–1432 (2002)

    Article  MATH  Google Scholar 

  14. Ravishankar, M.K.: Parallel implementation of fast beam search for speaker-independent continuous speech recognition (1993)

    Google Scholar 

  15. Singh, G., Ernst, A.T.: Resource constraint scheduling with a fractional shared resource. Oper. Res. Lett. 39(5), 363–368 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Stűtzle, T., López-Ibáñez, M., Dorigo, M.: A Concise Overview of Applications of Ant Colony Optimization. Wiley, New York (2010)

    Google Scholar 

  17. Thiruvady, D., Blum, C., Meyer, B., Ernst, A.: Hybridizing beam-ACO with constraint programming for single machine job scheduling. In: Blesa, M.J., Blum, C., Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.) HM 2009. LNCS, vol. 5818, pp. 30–44. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04918-7_3

    Chapter  Google Scholar 

  18. Thiruvady, D., Ernst, A.T., Singh, G.: Parallel ant colony optimization for resource constrained job scheduling. Ann. Oper. Res. 242, 1–18 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Thiruvady, D., Meyer, B., Ernst, A.T.: Car sequencing with constraint-based ACO. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 163–170. ACM, New York (2011)

    Google Scholar 

  20. Thiruvady, D., Singh, G., Ernst, A.T., Meyer, B.: Constraint-based ACO for a shared resource constrained scheduling problem. Int. J. Prod. Econ. 141(1), 230–242 (2013). Meta-heuristics for manufacturing scheduling and logistics problems

    Article  Google Scholar 

  21. Valls, V., Quintanilla, S., Ballestín, F.: Resource-constrained project scheduling: a critical activity reordering heuristic. Eur. J. Oper. Res. 149, 282–301 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhananjay Thiruvady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Cohen, D., Gómez-Iglesias, A., Thiruvady, D., Ernst, A.T. (2017). Resource Constrained Job Scheduling with Parallel Constraint-Based ACO. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51691-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51690-5

  • Online ISBN: 978-3-319-51691-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics