Abstract
The k-nearest neighbor (k-NN) method is a simple and highly effective classifier, but the classification accuracy of k-NN is degraded and becomes highly sensitive to the neighborhood size k in multi-classification problems, where the density of data samples varies across different classes. This is mainly due to the method using only a distance-based measure of similarity between different samples. In this paper, we propose a density-weighted distance similarity metric, which considers the relative densities of samples in addition to the distances between samples to improve the classification accuracy of standard k-NN. The performance of the proposed k-NN approach is not affected by the neighborhood size k. Experimental results show that the proposed approach yields better classification accuracy than traditional k-NN for fault diagnosis of rolling element bearings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, S., Shirong, Y., Baoping, T., Chen, L., Tianhong, L.: Bearing degradation process prediction based on the support vector machine and Markov model. Shock Vib. 2014, 15 p. (2014)
Thorsen, O., Magnus, D.: Failure identification and analysis for high voltage induction motors in petrochemical industry. In: 1998 IEEE Industry Applications Conference, Thirty-Third IAS Annual Meeting, vol. 1, pp. 291–298 (1998)
Hansen, D., Olsson, A.H.: ISO standard 13373-2: 2005: condition monitoring and diagnostics of machines–vibration condition monitoring–part 2: processing, analysis and presentation of vibration data. International Standards Organization (2009)
Andrew, J.K.S., Daming, L., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 7, 1483–1510 (2006)
Xiao, X., Huafeng, D.: Enhancement of K-nearest neighbor algorithm based on weighted entropy of attribute value. In: 5th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 1261–1264 (2012)
Wu, Y., Ianakiev, K., Venu, G.: Improved k-nearest neighbor classification. Pattern Recogn. Lett. 35(10), 2311–2318 (2002)
Baoli, L., Yu, S., Lu, Q.: An improved k-nearest neighbor algorithm for text categorization. In: Proceedings of the 20th International Conference on Computer Processing of Oriental Languages, Shenyang, China (2003)
Jiang, L., Zhihua, C., Dianhong, W., Siwei, J.: Survey of improving K-nearest-neighbor for classification. In: 4th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 679–683 (2007)
Hand, D.J., Vinciotti, V.: Choosing k for two-class nearest neighbor classifiers with unbalanced classes. Pattern Recogn. Lett. 24(9), 1555–1562 (2003)
Shiliang, S., Huang, R.: An adaptive k-nearest neighbor algorithm. In: IEEE 7th International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp. 91–94 (2010)
Jia, W., Cai, Z., Gao, Z.: Dynamic K-nearest-neighbor with distance and attribute weighted for classification. In: IEEE International Conference on Electronics and Information Engineering, vol. 1, pp. V1–356 (2010)
Wesam, A., Murtaja, M.: Finding within cluster dense regions using distance based technique. Int. J. Intell. Syst. Appl. 2, 42 (2012)
Lee, J., Qiu, H., Yu, G., Lin, J.: Rexnord Technical Services, Bearing Data Set, IMS, University of Cincinnati, NASA Ames Prognostics Data Repository (2007)
Kim, C.H., Uddin, S., Islam, R., Kim, J.M.: Many-core accelerated local outlier factor based classifier in bearing fault diagnosis. In: IEEE 18th International Conference on Computer and Information Technology, pp. 445–449 (2015)
Xia, Z., Shixiong, X., Wan, L., Cai, S.: Spectral regression based fault feature extraction for bearing accelerometer sensor signals. Sensors 10, 13694–13719 (2012)
Yaqub, M., Iqbal, G., Joarder, K.: Inchoate fault detection framework: adaptive selection of wavelet nodes and cumulant orders. IEEE Trans. Instrum. Meas. 3, 685–695 (2012)
Li, B., Lie, Z.P., Liu, D., Mi, S., Ren, G., Tian, H.: Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization. J. Sound Vib. 10(330), 2388–2399 (2011)
Kang, M., Islam, R., Kim, J., Kim, J.M., Pecht, M.: A hybrid feature selection scheme for reducing diagnostic performance deterioration caused by outliers in data-driven diagnostics. IEEE Trans. Industr. Electron. 63(5), 3299–3310 (2016)
Acknowledgements
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20162220100050). It was also supported by The Leading Human Resource Training Program of Regional Neo Industry through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2016H1D5A1910564), by the Business for Cooperative R&D between Industry, Academy, and Research Institute funded by the Korea Small and Medium Business Administration in 2016 (Grants S2381631, C0395147), and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B03931927).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Appana, D.K., Islam, M.R., Kim, JM. (2017). Reliable Fault Diagnosis of Bearings Using Distance and Density Similarity on an Enhanced k-NN. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-51691-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51690-5
Online ISBN: 978-3-319-51691-2
eBook Packages: Computer ScienceComputer Science (R0)