Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploiting Photometric Information for Planning Under Uncertainty

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

Vision-based localization systems rely on highly-textured areas for achieving an accurate pose estimation. However, most previous path planning strategies propose to select trajectories with minimum pose uncertainty by leveraging only the geometric structure of the scene, neglecting the photometric information (i.e, texture). Our planner exploits the scene’s visual appearance (i.e, the photometric information) in combination with its 3D geometry. Furthermore, we assume that we have no prior knowledge about the environment given, meaning that there is no pre-computed map or 3D geometry available. We introduce a novel approach to update the optimal plan on-the-fly, as new visual information is gathered. We demonstrate our approach with real and simulated Micro Aerial Vehicles (MAVs) that perform perception-aware path planning in real-time during exploration. We show significantly reduced pose uncertainty over trajectories planned without considering the perception of the robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision (ECCV), pp. 834–849 (2014)

    Google Scholar 

  2. Forster, C., Pizzoli, M., Scaramuzza, M.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  3. Weiss, S., Achtelik, M.W., Lynen, S., Achtelik, M.C., Kneip, L., Chli, M., Siegwart, R.: Monocular vision for long-term micro aerial vehicle state estimation: a compendium. J. Field Robot. 30(5), 803–831 (2013)

    Article  Google Scholar 

  4. Scaramuzza, D., Achtelik, M.C., Doitsidis, L., Fraundorfer, F., Kosmatopoulos, E.B., Martinelli, A., Achtelik, M.W., Chli, M., Chatzichristofis, S.A., Kneip, L., Gurdan, D., Heng, L., Lee, G.H., Lynen, S., Meier, L., Pollefeys, M., Renzaglia, A., Siegwart, R., Stumpf, J.C., Tanskanen, P., Troiani, C., Weiss, S.: Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21, 26–40 (2014)

    Article  Google Scholar 

  5. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. Robot. 28(1), 90–100 (2012)

    Article  Google Scholar 

  6. Nieuwenhuisen, M., Droeschel, D., Beul, M., Behnke, S.: Obstacle detection and navigation planning for autonomous micro aerial vehicles. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1040–1047. IEEE (2014)

    Google Scholar 

  7. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 723–730 (2011)

    Google Scholar 

  8. Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A.S., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Robot. Res. 31(11), 1320–1343 (2012)

    Article  Google Scholar 

  9. Sim, R., Roy, N.: Global a-optimal robot exploration in slam. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 661–666, April 2005

    Google Scholar 

  10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  11. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. 30(11), 1343–1377 (2011)

    Article  Google Scholar 

  12. Soatto, S.: Actionable information in vision. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Machine Learning for Computer Vision, pp. 17–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 865–880 (2002)

    Article  Google Scholar 

  14. Sadat, S.A., Chutskoff, K., Jungic, D., Wawerla, J., Vaughan, R.: Feature-rich path planning for robust navigation of MAVs with mono-SLAM. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  15. Achtelik, M.W., Lynen, S., Weiss, S., Chli, M., Siegwart, R.: Motion-and uncertainty-aware path planning for micro aerial vehicles. J. Field Robot. 31(4), 676–698 (2014)

    Article  Google Scholar 

  16. Kim, A., Eustice, R.M.: Perception-driven navigation: active visual slam for robotic area coverage. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3196–3203. IEEE (2013)

    Google Scholar 

  17. Irani, M., Anandan, P.: All about direct methods. In: Vision Algorithms: Theory and Practice, pp. 267–277. Springer (2000)

    Google Scholar 

  18. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327 (2011)

    Google Scholar 

  19. Ferguson, D., Kalra, N., Stentz, A.: Replanning with rrts. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1243–1248. IEEE (2006)

    Google Scholar 

  20. Boardman, B.L., Harden, T.A., Martinez, S.: Optimal kinodynamic motion planning in environments with unexpected obstacles. Technical report, Los Alamos National Laboratory (LANL) (2014)

    Google Scholar 

  21. Otte, M., Frazzoli, E.: RRT-X: real-time motion planning/replanning for environments with unpredictable obstacles. In: International Workshop on the Algorithmic Foundations of Robotics (WAFR) (2014)

    Google Scholar 

  22. Schmid, K., Lutz, P., Tomić, T., Mair, E., Hirschmüller, H.: Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robot. 31(4), 537–570 (2014)

    Article  Google Scholar 

  23. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30, 679–693 (2014)

    Article  Google Scholar 

  24. Meilland, M., Comport, A.I.: On unifying key-frame and voxel-based dense visual SLAM at large scales. In: IEEE International Conference on Intelligent Robots and Systems (IROS) (2013)

    Google Scholar 

  25. Haner, S., Heyden, A.: Optimal view path planning for visual slam. In: Heyden, A., Kahl, F. (eds.) Image Analysis, pp. 370–380. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)

    Article  Google Scholar 

  27. Mason, J., Ricco, S., Parr, R.: Textured occupancy grids for monocular localization without features. In: IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (2011)

    Google Scholar 

  28. Pizzoli, M., Forster, C., Scaramuzza, D.: REMODE: probabilistic, monocular dense reconstruction in real time. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2609–2616. IEEE, May 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Costante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Costante, G., Delmerico, J., Werlberger, M., Valigi, P., Scaramuzza, D. (2018). Exploiting Photometric Information for Planning Under Uncertainty. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics