Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering of Paths in Complex Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications V (COMPLEX NETWORKS 2016 2016)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 693))

Included in the following conference series:

Abstract

While network analysis is more than 70 years old, the analysis of paths in complex networks is yet almost negligible. Here, we introduce different measures of computing the pairwise similarity of paths, either simply based on the elements in the paths, their sequence, on the graph in which they are embedded, or incorporating all three features. Based on ground-truth in a data set concerning how people solve a one-player puzzle, we show that the classification of the paths using the similarity measures in a hierarchical clustering approach performs best for the similarity measures which integrate all three features. We thus give first evidence that path similarity measures provide another dimension to mine and analyze complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bashir, F., Khokhar, A., Schonfeld, D.: Segmented trajectory based indexing and retrieval of video data. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. II–623. IEEE (2003)

    Google Scholar 

  2. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting Commuting Patterns by Clustering Subtrajectories. In: Algorithms and Computation: 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, September, pp. 644–655 (2008)

    Google Scholar 

  3. Buzan, D., Sclaroff, S., Kollios, G.: Extraction and clustering of motion trajectories in video. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 521–524. IEEE (2004)

    Google Scholar 

  4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1082–1090. ACM (2011)

    Google Scholar 

  5. Dorn, I., Lindenblatt, A., Zweig, K.A.: The trilemma of network analysis. In: Proceedings of the 2012 IEEE/ACM international conference on Advances in Social Network Analysis and Mining, Istanbul (2012)

    Google Scholar 

  6. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Google Scholar 

  7. Gudmundsson, J., Thom, A., Vahrenhold, J.: Of Motifs and Goals: Mining Trajectory Data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL ’12, pp. 129–138. ACM (2012)

    Google Scholar 

  8. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge University Press, New York, NY, USA (1997)

    Google Scholar 

  9. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et du jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  10. Jarušek, P.: Modeling problem solving times in tutoring systems. Ph.D. thesis, Masarykova univerzita, Fakulta informatiky (2013)

    Google Scholar 

  11. Jarušek, P., Pelánek, R.: Analysis of a simple model of problem solving times. In: S. Cerri, W. Clancey, G. Papadourakis, K. Panourgia (eds.) Intelligent Tutoring Systems, Lecture Notes in Computer Science, vol. 7315, pp. 379–388. Springer, Berlin Heidelberg (2012)

    Google Scholar 

  12. Junejo, I.N., Javed, O., Shah, M.: Multi feature path modeling for video surveillance. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 2, pp. 716–719. IEEE (2004)

    Google Scholar 

  13. Kumar, P., Raju, B.S., Krishna, P.R.: A new similarity metric for sequential data. Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends: New Trends p. 233 (2011)

    Google Scholar 

  14. Laasonen, K.: Clustering and prediction of mobile user routes from cellular data. In: Knowledge Discovery in Databases: PKDD 2005, Lecture Notes in Computer Science, vol. 3721, pp. 569–576. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  15. Makris, D., Ellis, T.: Path detection in video surveillance. Image and Vision Computing 20(12), 895–903 (2002)

    Google Scholar 

  16. Mannila, H., Moen, P.: Similarity between event types in sequences. In: Proceedings of the First International Conference on Data Warehousing and Knowledge Discovery, pp. 271–280. Springer, London (1999)

    Google Scholar 

  17. Mannila, H., Ronkainen, P.: Similarity of event sequences. In: Proceedings of the 4th International Workshop on Temporal Representation and Reasoning (TIME), p. 136. IEEE Computer Society (1997)

    Google Scholar 

  18. Moen, P.: Attribute, event sequence, and event type similarity notions for data mining. Ph.D. thesis, University of Helsinki, Department of Computer Science (2000)

    Google Scholar 

  19. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)

    Google Scholar 

  20. Wang, W., Zaïane, O.R.: Clustering web sessions by sequence alignment. In: Database and Expert Systems Applications, 2002. Proceedings. 13th International Workshop on, pp. 394–398. IEEE (2002)

    Google Scholar 

  21. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mareike Bockholt or Katharina A. Zweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bockholt, M., Zweig, K.A. (2017). Clustering of Paths in Complex Networks. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds) Complex Networks & Their Applications V. COMPLEX NETWORKS 2016 2016. Studies in Computational Intelligence, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-50901-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50901-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50900-6

  • Online ISBN: 978-3-319-50901-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics