Abstract
New computing technologies, such as affective computing and sentiment analysis, are raising a strong interest in different fields, such as marketing, politics and, recently, life sciences. Examples of possible applications in the last field, regard the detection and monitoring of depressive states or mood disorders and anxiety conditions. This paper aims to provide an introductory overview of affective computing and sentiment analysis, through the discussion of the main processing techniques and applications. The paper concludes with a discussion relative to a new approach based on the integration of sentiment analysis and affective computing to obtain a more accurate and reliable detection of emotions and feelings for applications in the life sciences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Valstar, M.: Automatic behaviour understanding in medicine. In: Proceedings of the Workshop on Roadmapping the Future of Multimodal Interaction Research including Business Opportunities and Challenges, pp. 57–60 (2014)
Martinez, C.C., Cassol, M.: Measurement of voice quality, anxiety and depression symptoms after speech therapy. J. Voice 29(4), 446–449 (2015)
Schaefer, K.L., Baumann, J., Rich, B.A., Luckenbaugh, D.A., Zarate, C.A.: Perception of facial emotion in adults with bipolar or unipolar depression and controls. J. Psychiatr. Res. 44, 1229–1235 (2010)
Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)
Koelstra, S., Patras, I.: Fusion of facial expressions and EEG for implicit affective tagging. Image Vis. Comput. 31, 164–174 (2013)
Poria, S., Cambria, E., Howard, N., Huang, G., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. J. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)
Zafarani, R., Liu, H.: Behavior analysis in social media. IEEE Intell. Syst. 29(4), 9–11 (2014)
Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7867, pp. 201–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_18
Snyder, M.: Self-monitoring of expressive behavior. J. Pers. Soc. Psychol. 30(4), 526–537 (1974)
He, Q., Glas, C.A.W., Kosinski, M., Stillwell, D.J., Veldkamp, B.P.: Predicting self-monitoring skills using textual posts on Facebook. Comput. Hum. Behav. 33, 69–78 (2014)
Armony, J.L.: Affective computing. Trends Cogn. Sci. 2(7), 270 (1998)
Calvo, R.A., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)
Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)
Lee, H., Choi, Y.S., Lee, S., Park, I.P.: Towards unobtrusive emotion recognition for affective social communication. In: 9th Annual IEEE Consumer Communications and Networking Conference, pp. 260–264. IEEE (2012)
Batliner, A., Schuller, B., Seppi, D., Steidl, S., Devillers, L., Vidrascu, L., Vogt, T., Aharonson, V., Amir, N.: The automatic recognition of emotions in speech. Emotion-Oriented Syst. 2, 71–99 (2011)
Dai, W., Han, D., Dai, Y., Xu, D.: Emotion recognition and affective computing on vocal social media. Inform. Manage. 52, 777–788 (2015)
Lee, Y.Y., Hsieh, S.: Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9, 1–13 (2014)
Delle-Vignea, D., Wangb, W., Kornreicha, C., Verbancka, P., Campanellaa, S.: Emotional facial expression processing in depression: Data from behavioral and event-related potential studies. Neurophysiol. Clin. Clin. Neurophysiol. 44, 169–187 (2014)
Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten - twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999)
Wang, X.-W., Nie, D., Lu, B.-L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 734–743. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24955-6_87
Bhuvaneswari, P., Kumar, J.S.: Support vector machine technique for EEG signals. Int. J. Comput. Appl. 63(13), 1–5 (2013)
Nie, D., Wang, X.W., Shi, L.C., Lu, B.L.:EEG-based emotion recognition during watching movies. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 667–670 (2011)
Yoon, H.J., Chung, S.Y.: EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm. Comput. Biol. Med. 43(12), 2230–2237 (2013)
Peter, C., Ebert, E., Beikirch, H.: A wearable multi-sensor system for mobile acquisition of emotion-related physiological data. Affect. Comput. Intell. Interac. 3784, 691–698 (2005)
Ioannou, S.V., Raouzaiou, A.T., Tzouvaras, V.A., Mailis, T.P., Karpouzis, K.C., Kollias, S.D.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Netw. 18(4), 423–435 (2005)
Barrón-Estrada, M.L., Zatarain-Cabada, R., Beltrán V., J.A., Cibrian R., F.L., Pérez, Y.H.: An intelligent and affective tutoring system within a social network for learning mathematics. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 651–661. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34654-5_66
Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)
Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl.-Based Syst. 89, 14–46 (2015)
Feldman, R.: Techniques and applications for sentiment analysis. Mag. Commun. ACM 56(4), 82–89 (2013)
Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: a review and comparative analysis of web services. Inform. Sci. 311, 18–38 (2015)
Batrinca, B., Treleaven, P.: C.,: Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30, 89–116 (2015)
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical report. Stanford University, Stanford Digital Library Technologies Project (2009)
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the Seventh Conference on International Language Resources and Evaluation, pp. 1320–1326 (2010)
Rodrigues, R.G., das Dores, R.M., Camilo-Junior, C.G., Rosa, T.C.: SentiHealth-Cancer: a sentiment analysis tool to help detecting mood of patients in online social networks. Int. J. Med. Inform. 85, 80–95 (2016)
Ortigosa, A., Carro, R.M., Quiroga, J.I.: Predicting user personality by mining social interactions in Facebook. J. Comput. Syst. Sci. 80, 57–71 (2014)
Martin, J.M., Ortigosa, A., Carro, R.M.: SentBuk: sentiment analysis for e-learning environments. In: 2012 International Symposium on Computers in Education (SIIE), pp. 1–6. IEEE (2012)
Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and combining sentiment analysis methods. In: Proceedings of the First ACM Conference on Online Social Networks (2013)
Araújo, M., Gonçalves, P., Cha, M., Benevenuto, F.: iFeel: a web system that compares and combines sentiment analysis methods. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion (2014)
Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.: EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)
Calabrese, B., Cannataro, M., Ielpo, N.: Using social networks data for behavior and sentiment analysis. In: Fatta, G., Fortino, G., Li, W., Pathan, M., Stahl, F., Guerrieri, A. (eds.) IDCS 2015. LNCS, vol. 9258, pp. 285–293. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23237-9_25
Poria, S., Cambria, E., Hussain, A., Huang, G.: Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 63, 104–116 (2015)
Acknowledgments
This work has been partially supported by the following research project funded by the Italian Ministry of University and Research (MIUR): PON03PE_00001_1 BA2Know-Business Analytics to Know.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Calabrese, B., Cannataro, M. (2016). Sentiment Analysis and Affective Computing: Methods and Applications. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-50862-7_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50861-0
Online ISBN: 978-3-319-50862-7
eBook Packages: Computer ScienceComputer Science (R0)