Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sentiment Analysis and Affective Computing: Methods and Applications

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

New computing technologies, such as affective computing and sentiment analysis, are raising a strong interest in different fields, such as marketing, politics and, recently, life sciences. Examples of possible applications in the last field, regard the detection and monitoring of depressive states or mood disorders and anxiety conditions. This paper aims to provide an introductory overview of affective computing and sentiment analysis, through the discussion of the main processing techniques and applications. The paper concludes with a discussion relative to a new approach based on the integration of sentiment analysis and affective computing to obtain a more accurate and reliable detection of emotions and feelings for applications in the life sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Valstar, M.: Automatic behaviour understanding in medicine. In: Proceedings of the Workshop on Roadmapping the Future of Multimodal Interaction Research including Business Opportunities and Challenges, pp. 57–60 (2014)

    Google Scholar 

  2. Martinez, C.C., Cassol, M.: Measurement of voice quality, anxiety and depression symptoms after speech therapy. J. Voice 29(4), 446–449 (2015)

    Article  Google Scholar 

  3. Schaefer, K.L., Baumann, J., Rich, B.A., Luckenbaugh, D.A., Zarate, C.A.: Perception of facial emotion in adults with bipolar or unipolar depression and controls. J. Psychiatr. Res. 44, 1229–1235 (2010)

    Article  Google Scholar 

  4. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

    Book  Google Scholar 

  5. Koelstra, S., Patras, I.: Fusion of facial expressions and EEG for implicit affective tagging. Image Vis. Comput. 31, 164–174 (2013)

    Article  Google Scholar 

  6. Poria, S., Cambria, E., Howard, N., Huang, G., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016)

    Article  Google Scholar 

  7. Pang, B., Lee, L.: Opinion mining and sentiment analysis. J. Found. Trends Inf. Retrieval 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  8. Zafarani, R., Liu, H.: Behavior analysis in social media. IEEE Intell. Syst. 29(4), 9–11 (2014)

    Article  Google Scholar 

  9. Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7867, pp. 201–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40319-4_18

    Chapter  Google Scholar 

  10. Snyder, M.: Self-monitoring of expressive behavior. J. Pers. Soc. Psychol. 30(4), 526–537 (1974)

    Article  Google Scholar 

  11. He, Q., Glas, C.A.W., Kosinski, M., Stillwell, D.J., Veldkamp, B.P.: Predicting self-monitoring skills using textual posts on Facebook. Comput. Hum. Behav. 33, 69–78 (2014)

    Article  Google Scholar 

  12. Armony, J.L.: Affective computing. Trends Cogn. Sci. 2(7), 270 (1998)

    Article  Google Scholar 

  13. Calvo, R.A., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)

    Article  Google Scholar 

  14. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods: audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 39–58 (2009)

    Google Scholar 

  15. Lee, H., Choi, Y.S., Lee, S., Park, I.P.: Towards unobtrusive emotion recognition for affective social communication. In: 9th Annual IEEE Consumer Communications and Networking Conference, pp. 260–264. IEEE (2012)

    Google Scholar 

  16. Batliner, A., Schuller, B., Seppi, D., Steidl, S., Devillers, L., Vidrascu, L., Vogt, T., Aharonson, V., Amir, N.: The automatic recognition of emotions in speech. Emotion-Oriented Syst. 2, 71–99 (2011)

    Article  Google Scholar 

  17. Dai, W., Han, D., Dai, Y., Xu, D.: Emotion recognition and affective computing on vocal social media. Inform. Manage. 52, 777–788 (2015)

    Article  Google Scholar 

  18. Lee, Y.Y., Hsieh, S.: Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9, 1–13 (2014)

    Google Scholar 

  19. Delle-Vignea, D., Wangb, W., Kornreicha, C., Verbancka, P., Campanellaa, S.: Emotional facial expression processing in depression: Data from behavioral and event-related potential studies. Neurophysiol. Clin. Clin. Neurophysiol. 44, 169–187 (2014)

    Article  Google Scholar 

  20. Klem, G.H., Luders, H.O., Jasper, H.H., Elger, C.: The ten - twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999)

    Google Scholar 

  21. Wang, X.-W., Nie, D., Lu, B.-L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Lu, B.-L., Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 734–743. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24955-6_87

    Chapter  Google Scholar 

  22. Bhuvaneswari, P., Kumar, J.S.: Support vector machine technique for EEG signals. Int. J. Comput. Appl. 63(13), 1–5 (2013)

    Google Scholar 

  23. Nie, D., Wang, X.W., Shi, L.C., Lu, B.L.:EEG-based emotion recognition during watching movies. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 667–670 (2011)

    Google Scholar 

  24. Yoon, H.J., Chung, S.Y.: EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm. Comput. Biol. Med. 43(12), 2230–2237 (2013)

    Article  Google Scholar 

  25. Peter, C., Ebert, E., Beikirch, H.: A wearable multi-sensor system for mobile acquisition of emotion-related physiological data. Affect. Comput. Intell. Interac. 3784, 691–698 (2005)

    Article  Google Scholar 

  26. Ioannou, S.V., Raouzaiou, A.T., Tzouvaras, V.A., Mailis, T.P., Karpouzis, K.C., Kollias, S.D.: Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Netw. 18(4), 423–435 (2005)

    Article  Google Scholar 

  27. Barrón-Estrada, M.L., Zatarain-Cabada, R., Beltrán V., J.A., Cibrian R., F.L., Pérez, Y.H.: An intelligent and affective tutoring system within a social network for learning mathematics. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 651–661. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34654-5_66

    Chapter  Google Scholar 

  28. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  29. Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl.-Based Syst. 89, 14–46 (2015)

    Article  Google Scholar 

  30. Feldman, R.: Techniques and applications for sentiment analysis. Mag. Commun. ACM 56(4), 82–89 (2013)

    Article  Google Scholar 

  31. Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment analysis: a review and comparative analysis of web services. Inform. Sci. 311, 18–38 (2015)

    Article  Google Scholar 

  32. Batrinca, B., Treleaven, P.: C.,: Social media analytics: a survey of techniques, tools and platforms. AI Soc. 30, 89–116 (2015)

    Article  Google Scholar 

  33. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical report. Stanford University, Stanford Digital Library Technologies Project (2009)

    Google Scholar 

  34. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the Seventh Conference on International Language Resources and Evaluation, pp. 1320–1326 (2010)

    Google Scholar 

  35. Rodrigues, R.G., das Dores, R.M., Camilo-Junior, C.G., Rosa, T.C.: SentiHealth-Cancer: a sentiment analysis tool to help detecting mood of patients in online social networks. Int. J. Med. Inform. 85, 80–95 (2016)

    Google Scholar 

  36. Ortigosa, A., Carro, R.M., Quiroga, J.I.: Predicting user personality by mining social interactions in Facebook. J. Comput. Syst. Sci. 80, 57–71 (2014)

    Article  MathSciNet  Google Scholar 

  37. Martin, J.M., Ortigosa, A., Carro, R.M.: SentBuk: sentiment analysis for e-learning environments. In: 2012 International Symposium on Computers in Education (SIIE), pp. 1–6. IEEE (2012)

    Google Scholar 

  38. Gonçalves, P., Araújo, M., Benevenuto, F., Cha, M.: Comparing and combining sentiment analysis methods. In: Proceedings of the First ACM Conference on Online Social Networks (2013)

    Google Scholar 

  39. Araújo, M., Gonçalves, P., Cha, M., Benevenuto, F.: iFeel: a web system that compares and combines sentiment analysis methods. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion (2014)

    Google Scholar 

  40. Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.: EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowl.-Based Syst. 69, 108–123 (2014)

    Article  Google Scholar 

  41. Calabrese, B., Cannataro, M., Ielpo, N.: Using social networks data for behavior and sentiment analysis. In: Fatta, G., Fortino, G., Li, W., Pathan, M., Stahl, F., Guerrieri, A. (eds.) IDCS 2015. LNCS, vol. 9258, pp. 285–293. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23237-9_25

    Chapter  Google Scholar 

  42. Poria, S., Cambria, E., Hussain, A., Huang, G.: Towards an intelligent framework for multimodal affective data analysis. Neural Netw. 63, 104–116 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the following research project funded by the Italian Ministry of University and Research (MIUR): PON03PE_00001_1 BA2Know-Business Analytics to Know.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Cannataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Calabrese, B., Cannataro, M. (2016). Sentiment Analysis and Affective Computing: Methods and Applications. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics