Abstract
Restoration of optical images degraded by atmospheric turbulence and various types of noise is still an open problem. In this paper, we propose an optical image restoration method based on a Reaction-Diffusion Equation and Photometric Similarity (RDEPS). We exploit photometric similarity and geometric closeness of the optical image by combining a photometric similarity function and a appropriately defined reaction-diffusion equation. Our resulting RDEPS filter is used to restore images degraded by atmospheric turbulence and noise, including Gaussian noise and impulse noise. Extensive experimental results show that our method outperforms other recently developed methods in terms of PSNR and SSIM. Moreover, the computational efficiency analysis shows that our RDEPS provides efficient restoration of optical images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anantrasirichai, N., Achim, A., Kingsbury, N.G., Bull, D.R.: Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Trans. Image Process. 22(6), 2398–2408 (2013)
Arboleda, C., Wang, Z., Stampanoni, M.: Wavelet-based noise-model driven denoising algorithm for differential phase contrast mammography. Opt. Express 21(9), 10572–10589 (2013)
Chen, F., Zhang, L., Yu, H.: External patch prior guided internal clustering for image denoising. In: 2015 IEEE International Conference on Computer Vision, ICCV, pp. 603–611 (2015)
Chen, G., Xie, W., Zhao, Y.: Wavelet-based denoising: a brief review. In: Intelligent Control and Information Processing (ICICIP). pp. 570–574, June 2013
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
Domingues Jr., M.O., Mendes, O., da Costa, A.M.: On wavelet techniques in atmospheric sciences. Adv. Space Res. 35(5), 831–842 (2005). Fundamentals of Space Environment Science
Furhad, M.H., Tahtali, M., Lambert, A.: Restoring atmospheric-turbulence-degraded images. Appl. Opt. 55(19), 5082–5090 (2016)
Ghimpeţeanu, G., Batard, T., Bertalmío, M., Levine, S.: Denoising an Image by denoising its components in a moving frame. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 375–383. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07998-1_43
Irum, I., Shahid, M., Sharif, M., Raza, M.: A review of image denoising methods. J. Eng. Sci. Technol. Rev. 8(5), 41–48 (2015)
Ji, Z., Xia, Y., Sun, Q., Xia, D., Feng, D.D.: Local Gaussian distribution fitting based FCM algorithm for brain MR image segmentation. In: Zhang, Y., Zhou, Z.-H., Zhang, C., Li, Y. (eds.) IScIDE 2011. LNCS, vol. 7202, pp. 318–325. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31919-8_41
Jiang, J., Zhang, L., Yang, J.: Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans. Image Process. 23(6), 2651–2662 (2014)
Kuijper, A.: Geometrical PDEs based on second-order derivatives of gauge coordinates in image processing. Image Vis. Comput. 27(8), 1023–1034 (2009)
Li, D., Mersereau, R.M., Simske, S.J.: Atmospheric turbulence-degraded image restoration using principal components analysis. IEEE Geosci. Remote Sensing Lett. 4(3), 340–344 (2007)
Li, D., Simske, S.J.: Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 6(2), 244–247 (2009)
Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner, Stuttgart (1998)
Niknejad, M., Rabbani, H., Babaie-Zadeh, M.: Image restoration using gaussian mixture models with spatially constrained patch clustering. IEEE Trans. Image Process. 24(11), 3624–3636 (2015)
Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., Markey, M.K.: Complex wavelet structural similarity: a new image similarity index. IEEE Trans. Image Process. 18(11), 2385–2401 (2009)
Song, C., Ma, K., Li, A., Chen, X., Xu, X.: Diffraction-limited image reconstruction with SURE for atmospheric turbulence removal. Infrared Phys. Technol. 71, 171–174 (2015)
Wang, X., Zhao, X., Guo, F., Ma, J.: Impulsive noise detection by double noise detector and removal using adaptive neural-fuzzy inference system. AEU-Int. J. Electron. Commun. 65(5), 429–434 (2011). Elsevier
Xue, B., Cao, L., Cui, L., Bai, X., Cao, X., Zhou, F.: Analysis of non-Kolmogorov weak turbulence effects on infrared imaging by atmospheric turbulence MTF. Opt. Commun. 300, 114–118 (2013)
Yan, L., Jin, M., Fang, H., Liu, H., Zhang, T.: Atmospheric-turbulence-degraded astronomical image restoration by minimizing second-order central moment. IEEE Geosci. Remote Sens. Lett. 9(4), 672–676 (2012)
Yang, A., Lu, M., Teng, S., Sun, J.: Phase estimation based blind deconvolution for turbulence degraded images. In: 2013 International Conference on Virtual Reality and Visualization (ICVRV), pp. 273–276, September 2013
Zhao, X., Wang, X.: Novel adaptive high-performance and nonlinear filtering algorithm for mixed noise removal. J. Electron. Imaging 21(2), 023005 (2012)
Zhu, X., Milanfar, P.: Removing atmospheric turbulence via space-invariant deconvolution. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 157–170 (2013)
Acknowledgement
This work supported by Doctor Scientific Research Foundation, Xi’an Polytechnic University, the Special Scientific Research Project of Education Department of Shaanxi Provincial Government (No. 16JK1328), and China Scholarship Council (CSC) Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhao, X., Mavridis, P., Schreck, T., Kuijper, A. (2016). RDEPS: A Combined Reaction-Diffusion Equation and Photometric Similarity Filter for Optical Image Restoration. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-50832-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50831-3
Online ISBN: 978-3-319-50832-0
eBook Packages: Computer ScienceComputer Science (R0)