Nothing Special   »   [go: up one dir, main page]

Skip to main content

Overview of the NLPCC-ICCPOL 2016 Shared Task: Chinese Word Similarity Measurement

  • Conference paper
  • First Online:
Natural Language Understanding and Intelligent Applications (ICCPOL 2016, NLPCC 2016)

Abstract

Word similarity computation is a fundamental task for natural language processing. We organize a semantic campaign of Chinese word similarity measurement at NLPCC-ICCPOL 2016. This task provides a benchmark dataset of Chinese word similarity (PKU-500 dataset), including 500 word pairs with their similarity scores. There are 21 teams submitting 24 systems in this campaign. In this paper, we describe clearly the data preparation and word similarity annotation, make an in-depth analysis on the evaluation results and give a brief introduction to participating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)

    Article  Google Scholar 

  2. Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Neurosci. 6(1), 1–28 (1991)

    Google Scholar 

  3. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., et al.: Placing search in context: the concept revisited. TOIS 20, 116–131 (2002)

    Article  Google Scholar 

  4. Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: Proceedings of the Association for Computational Linguistics (2012)

    Google Scholar 

  5. Liu, Q., Li, S.: Word similarity computing based on HowNet. Int. J. Comput. Linguist. Chin. Lang. Process. 7, 59–76 (2002)

    Google Scholar 

  6. Jin, P., Wu, Y.: SemEval-2012 task 4: evaluating Chinese word similarity. In: First Joint Conference on Lexical and Computational Semantics (2012)

    Google Scholar 

  7. Guo, J., Che, W., Wang, H., Liu, T.: Learning sense-specific word embeddings by exploiting bilingual resources. In: Proceedings of COLING 2014 (2014)

    Google Scholar 

  8. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsupervised word embeddings. In: Proceedings of Empirical Methods in Natural Language Processing (2015)

    Google Scholar 

  9. Trask, A., Michalak, P., Liu, J.: Sense2vec - a fast and accurate method for word sense disambiguation in neural word embeddings (2015). arXiv preprint: arXiv:1511.06388

  10. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  11. Meng, L., Huang, R., Gu, J.: A review of semantic similarity measures in WordNet. Int. J. Hybrid Inf. Technol. 6, 1–12 (2013)

    Google Scholar 

  12. Tian, J.L., Zhao, W.: Words similarity algorithm based on Tongyici Cilin in semantic web adaptive learning system. J. Jilin Univ. 28(06), 602–608 (2010)

    Google Scholar 

  13. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of Coling-ACL 2002 (2002)

    Google Scholar 

  14. Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and WordNet-based approaches. In: Proceedings of Human Language Technology (2009)

    Google Scholar 

  15. Shi, J., Wu, Y., Qiu, L., Lv, X.: Chinese lexical semantic similarity computing based on large-scale corpus. J. Chin. Inf. Process. 27(1), 1–6 (2013)

    Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  17. Guo, S., Guan, Y., Li, R., Zhang, Q.: Chinese word similarity computing based on combination strategy. In: Proceedings of NLPCC 2016 (2016)

    Google Scholar 

  18. Liu, K.: Research on Chinese FrameNet construction and application technologies. J. Chin. Inf. Process. 6, 47 (2011)

    Google Scholar 

  19. Pei, J., Zhang C., Huang, D., Ma, J.: Combining word embedding and semantic lexicon for Chinese word similarity computation. In: Proceedings of NLPCC 2016 (2016)

    Google Scholar 

Download references

Acknowledgement

This work is supported by National High Technology Research and Development Program of China (2015AA015403), National Natural Science Foundation of China (61371129, 61572245), Key Program of Social Science foundation of China (12&ZD227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfang Wu .

Editor information

Editors and Affiliations

Appendix A: 91 Word Pairs with Standard Deviation Greater Than 2

Appendix A: 91 Word Pairs with Standard Deviation Greater Than 2

[没戏 没辙] [只管 尽管] [GDP 生产力] [包袱 段子] [日期 时间] [由此 通过]

[爱面子 好高骛远] [一方面 一边] [托福 GRE] [严厉 严谨] [抄袭 克隆]

[悲喜 大悲大喜] [亏 幸亏] [老气 土气] [蹩脚 差强人意] [容易 顺利]

[狭隘 狭窄] [害臊 腼腆] [理解 理会] [的哥 司机] [娇艳 幽美] [幻境 红楼梦]

[自然 环境] [权限 权利] [几乎 差点儿] [酣睡 打鼾] [振兴 建设] [节日 假日]

[依稀 清晰] [伟大 壮烈] [典型 代表] [出神 发楞] [冷僻 晦涩] [面 首]

[发票 账单] [物品 物质] [回收站 垃圾篓] [必须 必需] [路子 后门]

[牛脾气 我行我素] [免费 便宜] [江湖 红尘] [塞车 拥挤] [要面子 虚荣心]

[琢磨 镂刻] [大小 多少] [候选人 备胎] [旅客 驴友] [多角度 多元化]

[信物 物件] [豆蔻年华 黄金时代] [血液 红细胞] [酷 爽] [质量 重量]

[牺牲 粉身碎骨] [隆重 重要] [天赋 技能] [身姿 身手] [事变 后院起火]

[鸣谢 酬答] [硅谷 中关村] [平凡 平庸] [了不得 好] [许可证 执照]

[线路 行程] [与 以及] [和谐 平安] [怯懦 胆小鬼] [是非 方圆] [大 高]

[手续 过程] [高峰 山巅] [崛起 凸起] [辛勤 夜以继日] [环境 生态]

[渣 废品] [杂事 闲事] [商标 符号] [右翼 左派] [实践 进行] [借口 理由]

[收费 缴纳] [享受 大快朵颐] [吸引力 地磁力] [工作日 开放日]

[合理 合理性] [违纪 贪污] [言语 语言] [买卖 营销] [光盘 硬盘]

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wu, Y., Li, W. (2016). Overview of the NLPCC-ICCPOL 2016 Shared Task: Chinese Word Similarity Measurement. In: Lin, CY., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds) Natural Language Understanding and Intelligent Applications. ICCPOL NLPCC 2016 2016. Lecture Notes in Computer Science(), vol 10102. Springer, Cham. https://doi.org/10.1007/978-3-319-50496-4_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50496-4_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50495-7

  • Online ISBN: 978-3-319-50496-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics