Abstract
Word similarity computation is a fundamental task for natural language processing. We organize a semantic campaign of Chinese word similarity measurement at NLPCC-ICCPOL 2016. This task provides a benchmark dataset of Chinese word similarity (PKU-500 dataset), including 500 word pairs with their similarity scores. There are 21 teams submitting 24 systems in this campaign. In this paper, we describe clearly the data preparation and word similarity annotation, make an in-depth analysis on the evaluation results and give a brief introduction to participating systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)
Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Neurosci. 6(1), 1–28 (1991)
Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., et al.: Placing search in context: the concept revisited. TOIS 20, 116–131 (2002)
Huang, E.H., Socher, R., Manning, C.D., Ng, A.Y.: Improving word representations via global context and multiple word prototypes. In: Proceedings of the Association for Computational Linguistics (2012)
Liu, Q., Li, S.: Word similarity computing based on HowNet. Int. J. Comput. Linguist. Chin. Lang. Process. 7, 59–76 (2002)
Jin, P., Wu, Y.: SemEval-2012 task 4: evaluating Chinese word similarity. In: First Joint Conference on Lexical and Computational Semantics (2012)
Guo, J., Che, W., Wang, H., Liu, T.: Learning sense-specific word embeddings by exploiting bilingual resources. In: Proceedings of COLING 2014 (2014)
Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsupervised word embeddings. In: Proceedings of Empirical Methods in Natural Language Processing (2015)
Trask, A., Michalak, P., Liu, J.: Sense2vec - a fast and accurate method for word sense disambiguation in neural word embeddings (2015). arXiv preprint: arXiv:1511.06388
Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: International Joint Conference on Artificial Intelligence (1995)
Meng, L., Huang, R., Gu, J.: A review of semantic similarity measures in WordNet. Int. J. Hybrid Inf. Technol. 6, 1–12 (2013)
Tian, J.L., Zhao, W.: Words similarity algorithm based on Tongyici Cilin in semantic web adaptive learning system. J. Jilin Univ. 28(06), 602–608 (2010)
Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of Coling-ACL 2002 (2002)
Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and WordNet-based approaches. In: Proceedings of Human Language Technology (2009)
Shi, J., Wu, Y., Qiu, L., Lv, X.: Chinese lexical semantic similarity computing based on large-scale corpus. J. Chin. Inf. Process. 27(1), 1–6 (2013)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (2013)
Guo, S., Guan, Y., Li, R., Zhang, Q.: Chinese word similarity computing based on combination strategy. In: Proceedings of NLPCC 2016 (2016)
Liu, K.: Research on Chinese FrameNet construction and application technologies. J. Chin. Inf. Process. 6, 47 (2011)
Pei, J., Zhang C., Huang, D., Ma, J.: Combining word embedding and semantic lexicon for Chinese word similarity computation. In: Proceedings of NLPCC 2016 (2016)
Acknowledgement
This work is supported by National High Technology Research and Development Program of China (2015AA015403), National Natural Science Foundation of China (61371129, 61572245), Key Program of Social Science foundation of China (12&ZD227).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A: 91 Word Pairs with Standard Deviation Greater Than 2
Appendix A: 91 Word Pairs with Standard Deviation Greater Than 2
[没戏 没辙] [只管 尽管] [GDP 生产力] [包袱 段子] [日期 时间] [由此 通过]
[爱面子 好高骛远] [一方面 一边] [托福 GRE] [严厉 严谨] [抄袭 克隆]
[悲喜 大悲大喜] [亏 幸亏] [老气 土气] [蹩脚 差强人意] [容易 顺利]
[狭隘 狭窄] [害臊 腼腆] [理解 理会] [的哥 司机] [娇艳 幽美] [幻境 红楼梦]
[自然 环境] [权限 权利] [几乎 差点儿] [酣睡 打鼾] [振兴 建设] [节日 假日]
[依稀 清晰] [伟大 壮烈] [典型 代表] [出神 发楞] [冷僻 晦涩] [面 首]
[发票 账单] [物品 物质] [回收站 垃圾篓] [必须 必需] [路子 后门]
[牛脾气 我行我素] [免费 便宜] [江湖 红尘] [塞车 拥挤] [要面子 虚荣心]
[琢磨 镂刻] [大小 多少] [候选人 备胎] [旅客 驴友] [多角度 多元化]
[信物 物件] [豆蔻年华 黄金时代] [血液 红细胞] [酷 爽] [质量 重量]
[牺牲 粉身碎骨] [隆重 重要] [天赋 技能] [身姿 身手] [事变 后院起火]
[鸣谢 酬答] [硅谷 中关村] [平凡 平庸] [了不得 好] [许可证 执照]
[线路 行程] [与 以及] [和谐 平安] [怯懦 胆小鬼] [是非 方圆] [大 高]
[手续 过程] [高峰 山巅] [崛起 凸起] [辛勤 夜以继日] [环境 生态]
[渣 废品] [杂事 闲事] [商标 符号] [右翼 左派] [实践 进行] [借口 理由]
[收费 缴纳] [享受 大快朵颐] [吸引力 地磁力] [工作日 开放日]
[合理 合理性] [违纪 贪污] [言语 语言] [买卖 营销] [光盘 硬盘]
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Wu, Y., Li, W. (2016). Overview of the NLPCC-ICCPOL 2016 Shared Task: Chinese Word Similarity Measurement. In: Lin, CY., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds) Natural Language Understanding and Intelligent Applications. ICCPOL NLPCC 2016 2016. Lecture Notes in Computer Science(), vol 10102. Springer, Cham. https://doi.org/10.1007/978-3-319-50496-4_75
Download citation
DOI: https://doi.org/10.1007/978-3-319-50496-4_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50495-7
Online ISBN: 978-3-319-50496-4
eBook Packages: Computer ScienceComputer Science (R0)