Nothing Special   »   [go: up one dir, main page]

Skip to main content

Behavioral Modeling of Chaos-Based Applications by Using Verilog-A

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Abstract

In general, a system can be defined as a collection of interconnected components that transforms a set of inputs received from its environment to a set of outputs. From an engineering point of view, chaos-based applications can be classified as a electronic system where the vast majority of the internal signals used as interconnections are electrical signals. Inputs and outputs are also provided as electrical quantities, or converted from, or to, such signals using sensors or actuators. To gain insight about the overall performance of the particular chaos-based application, the whole system must be characterized and simulated simultaneously. That is not a trivial task because the complexity of each one of the blocks that comprises the system, as well as the intrinsic complex behavior of chaotic generators. In this chapter, a modeling strategy suited to represent chaos-based applications for different control parameters of chaotic systems is presented. Based on behavioral descriptions obtained from a Hardware Description Language (HDL), called Verilog-A, two applications of chaotic systems are analyzed and designed. More specifically, a chaotic sinusoidal pulse width modulator (SPWM) which is useful to develop control algorithms for motor drivers in electric vehicles, and a chaotic pulse position modulator (CPPM) widely used in communication systems are presented as cases under analysis. Those applications are coded in Verilog-A and by using different abstraction levels, the indications of the degree of detail specified on how the function is to be implemented are obtained. Therefore, these behavioral models try to capture as much circuit functionality as possible with far less implementation details than the device-level description of the electronic circuit. Several circuit simulations applying H-Spice simulator are presented to demonstrate the usefulness of the proposed models. In this manner, behavioral modeling can be a possible solution for the successful development of robust chaos-based applications due to various types of systems that can be represented and simulated by means of an abstract model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., & Vagliasindi, G. (2008). Reactive navigation through multiscroll systems: From theory to real-time implementation. Autonomous Robots, 25(1–2), 123–146. doi:10.1007/s10514-007-9068-1.

  2. Cheng, C. J. (2012). Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication. Applied Mathematics and Computation, 219(5), 2698–2712. doi:10.1016/j.amc.2012.08.101.

    Article  MathSciNet  MATH  Google Scholar 

  3. Faraji, S., & Tavazoei, M. (2013). The effect of fractionality nature in differences between computer simulation and experimental results of a chaotic circuit. Central European Journal of Physics, 11(6), 836–844. doi:10.2478/s11534-013-0255-8.

    Google Scholar 

  4. Gotthans, T., & Hrubos, Z. (2013). Multi grid chaotic attractors with discrete jumps. Journal of Electrical Engineering, 64(2), 118–122. doi:10.2478/jee-2013-0017.

    Article  Google Scholar 

  5. Kanno, T., Miyano, T., Tokuda, I., Galvanovskis, J., & Wakui, M. (2007). Chaotic electrical activity of living \(\beta \)-cells in the mouse pancreatic islet. Physica D: Nonlinear Phenomena, 226(2), 107–116. doi:10.1016/j.physd.2006.11.007.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kwon, O., Park, J., & Lee, S. (2011). Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dynamics, 63(1–2), 239–252. doi:10.1007/s11071-010-9800-9.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu, J., & Chen, G. (2006). Generating multiscroll chaotic attractors: Theories, methods and applications. International Journal of Bifurcation and Chaos, 16(4), 775–858. doi:10.1142/S0218127406015179.

    Article  MathSciNet  MATH  Google Scholar 

  8. Munoz-Pacheco, J., & Tlelo-Cuautle, E. (2010). Electronic design automation of multi-scroll chaos generators. doi:10.2174/97816080516561100101.

  9. Munoz-Pacheco, J., Zambrano-Serrano, E., Felix-Beltran, O., Gomez-Pavon, L., & Luis-Ramos, A. (2012). Synchronization of pwl function-based 2d and 3d multi-scroll chaotic systems. Nonlinear Dynamics, 70(2), 1633–1643. doi:10.1007/s11071-012-0562-4.

    Article  MathSciNet  Google Scholar 

  10. Munoz-Pacheco, J., Tlelo-Cuautle, E., Toxqui-Toxqui, I., Sanchez-Lopez, C., & Trejo-Guerra, R. (2014). Frequency limitations in generating multi-scroll chaotic attractors using cfoas. International Journal of Electronics, 101(11), 1559–1569. doi:10.1080/00207217.2014.880999.

    Article  Google Scholar 

  11. Pecora, L., & Carroll, T. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824. doi:10.1103/PhysRevLett.64.821.

    Article  MathSciNet  MATH  Google Scholar 

  12. Piper, J., & Sprott, J. (2010). Simple autonomous chaotic circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(9), 730–734. doi:10.1109/TCSII.2010.2058493.

    Article  Google Scholar 

  13. Sanchez-Lopez, C., Munoz-Pacheco, J., Tlelo-Cuautle, E., Carbajal-Gomez, V. & Trejo-Guerra, R. (2011) On the trade-off between the number of scrolls and the operating frequency of the chaotic attractors. In Proceedings—IEEE International Symposium on Circuits and Systems (pp. 2950–2953). doi:10.1109/ISCAS.2011.5938210.

  14. Sira-Ramirez, H., & Cruz-Hernandez, C. (2001). Synchronization of chaotic systems: A generalized hamiltonian systems approach. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 11(5), 1381–1395. doi:10.1142/S0218127401002778.

    Article  MATH  Google Scholar 

  15. Tsuda, I. (2009). Hypotheses on the functional roles of chaotic transitory dynamics. Chaos, 19(1). doi:10.1063/1.3076393.

  16. Zhang, Z., & Chen, G. (2005). Chaotic motion generation with applications to liquid mixing. In Proceedings of the 2005 European Conference on Circuit Theory and Design (Vol.1, pp. 225–228). doi:10.1109/ECCTD.2005.1522951.

  17. Azar, A. T., & Vaidyanathan, S. (2014). Chaos modeling and control systems design. Incorporated: Springer.

    MATH  Google Scholar 

  18. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Incorporated: Springer.

    Book  Google Scholar 

  19. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control (1st ed.). Incorporated: Springer.

    Book  MATH  Google Scholar 

  20. Boulkroune A, Bouzeriba, A., Bouden, T., & Azar, A. T. (2016) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 681–697). Springer. doi:10.1007/978-3-319-30340-6_28.

  21. Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016) Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In T. A. Azar & S. Vaidyanathan (Eds.) Advances in Chaos Theory and Intelligent Control, Springer International Publishing (pp. 699–718) doi:10.1007/978-3-319-30340-6_29.

  22. Ouannas, A., Azar, A. T., & Abu-Saris, R. (2016) A new type of hybrid synchronization between arbitrary hyperchaotic maps. International Journal of Machine Learning and Cybernetics, 1–8. doi:10.1007/s13042-016-0566-3.

  23. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2016). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences. doi:10.1002/mma.4099.

  24. Vaidyanathan, S., & Azar, A.T. (2016) Adaptive backstepping control and synchronization of a novel 3-d jerk system with an exponential nonlinearity. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 249–274). Springer. doi:10.1007/978-3-319-30340-6_11.

  25. Vaidyanathan, S., & Azar, A.T. (2016) Adaptive control and synchronization of a halvorsen circulant chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 225–247). Springer. doi:10.1007/978-3-319-30340-6_10.

  26. Vaidyanathan, S., & Azar, A.T. (2016) Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-d novel chaotic system with three quadratic nonlinearities. In T.A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 155–178). Springer. doi:10.1007/978-3-319-30340-6_7.

  27. Vaidyanathan, S., & Azar, A.T. (2016) Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 275–296). Springer. doi:10.1007/978-3-319-30340-6_12.

  28. Vaidyanathan, S., & Azar, A.T. (2016) A novel 4-d four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 203–224) Springer. doi:10.1007/978-3-319-30340-6_9.

  29. Vaidyanathan, S., & Azar, A.T. (2016) Qualitative study and adaptive control of a novel 4-d hyperchaotic system with a three quadratic nonlinearities. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 179–202). Springer. doi:10.1007/978-3-319-30340-6_8.

  30. Vaidyanathan, S., & Azar, A. T. (2016). Takagi-sugeno fuzzy logic controller for liu-chen four-scroll chaotic system. Int J Intell Eng Inform, 4(2), 135–150. doi:10.1504/IJIEI.2016.076699.

    Article  Google Scholar 

  31. Zhu, Q., & Azar, A. T. (Eds.), (2015). Complex system modelling and control through intelligent soft computations, studies in fuzziness and soft computing, (Vol. 319). Springer. doi:10.1007/978-3-319-12883-2.

  32. Bueno-Ruiz, J., Arriaga-Arriaga, C., Huerta-Barrera, R., Cruz-Dominguez, G., Pimentel-Romero, C., Munoz-Pacheco, J., et al. (2015). 16th Latin-American Test Symposium. LATS, 2015. doi:10.1109/LATW.2015.7102507.

  33. FitzPatrick, D., & Miller, I. (1997). Analog behavioral modeling with the VERILOG-a language (1st ed.). Norwell, MA, USA: Kluwer.

    Google Scholar 

  34. Gal, G., Fattah, O., & Roberts, G. (2012). A 30–40 ghz fractional-n frequency synthesizer development using a verilog-a high-level design methodology. In Proceedings of midwest symposium on circuits and systems (pp. 57–60). doi:10.1109/MWSCAS.2012.6291956.

  35. Gonzalez-Diaz, V., Munoz-Pacheco, J., Espinosa-Flores-Verdad, G., & Sanchez-Gaspariano, L. (2016). A verilog-a based fractional frequency synthesizer model for fast and accurate noise assessment. Radioengineering, 25(1), 89–97. doi:10.13164/re.2016.0089.

    Article  Google Scholar 

  36. Kundert, K., & Zinke, O. (2013). The designer’s guide to Verilog-AMS. Incorporated: Springer.

    MATH  Google Scholar 

  37. Liao, S., & Horowitz, M. (2013). A verilog piecewise-linear analog behavior model for mixed-signal validation. In Proceedings of the custom integrated circuits conference. doi:10.1109/CICC.2013.6658461.

  38. Martens, E. S. J., & Gielen, G. G. E. (2008). High-Level Modeling and Synthesis of Analog Integrated Systems (1st ed.). Incorporated: Springer.

    Book  MATH  Google Scholar 

  39. Munoz-Pacheco, J., Tlelo-Cuautle, E., Trejo-Guerra, R., & Cruz-Hernandez, C. (2008). Synchronization of n-scrolls chaotic systems synthesized from high-level behavioral modeling. In Proceedings of the 7th international Caribbean conference on devices, circuits and systems, ICCDCS. doi:10.1109/ICCDCS.2008.4542634.

  40. Rutenbar, R., Gielen, G., & Roychowdhury, J. (2007). Hierarchical modeling, optimization, and synthesis for system-level analog and rf designs. Proceedings of the IEEE, 95(3), 640–669. doi:10.1109/JPROC.2006.889371.

    Article  Google Scholar 

  41. Xuan Quyen, N., Van Yem, V., & Manh Hoang, T. (2012). A chaotic pulse-time modulation method for digital communication. Abstract and Applied Analysis, 2012. doi:10.1155/2012/835304.

  42. Zhang, Z., Ching, T., Liu, C., & Lee, C. (2012) Comparison of chaotic pwm algorithms for electric vehicle motor drives. In IECON proceedings (industrial electronics conference) (pp. 4087–4092). doi:10.1109/IECON.2012.6389236.

Download references

Acknowledgements

This work has been partially supported by the scientific projects: CONACYT No. 258880, PRODEP Red de Nanociencia y Nanotecnología, VIEP-BUAP-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Munoz-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Munoz-Pacheco, J.M. et al. (2017). Behavioral Modeling of Chaos-Based Applications by Using Verilog-A. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics