Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Approaches to Constraint Acquisition

  • Chapter
  • First Online:
Data Mining and Constraint Programming

Abstract

In this chapter we present the recent results on constraint acquisition obtained by the Coconut team and their collaborators. In a first part we show how to learn constraint networks by asking the user partial queries. That is, we ask the user to classify assignments to subsets of the variables as positive or negative. We provide an algorithm, called QuAcq, that, given a negative example, finds a constraint of the target network in a number of queries logarithmic in the size of the example. In a second part, we show that using some background knowledge may improve the acquisition process a lot. We introduce the concept of generalization query based on an aggregation of variables into types. We propose a generalization algorithm together with several strategies that we incorporate in QuAcq. Finally we evaluate our algorithms on some benchmarks.

Sections 3 and 4 of this paper describe material published in [9], Sect. 5 describes material published in [8], and Sect. 6 describes results coming from both of these two papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This operation could proactively be done in QuAcq, just after line 11, but we preferred the lazy mode as this is a computationally expensive operation.

References

  1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)

    MathSciNet  Google Scholar 

  2. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog. Technical report, T2005: 08, Swedish Institute of Computer Science, Kista, Sweden, May 2005

    Google Scholar 

  3. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)

    Google Scholar 

  4. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_12

    Chapter  Google Scholar 

  5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: A SAT-based version space algorithm for acquiring constraint satisfaction problems. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 23–34. Springer, Heidelberg (2005). doi:10.1007/11564096_8

    Chapter  Google Scholar 

  6. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acquisition. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, pp. 44–49 (2007)

    Google Scholar 

  7. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. (in press)

    Google Scholar 

  8. Bessiere, C., Coletta, R., Daoudi, A., Lazaar, N., Mechqrane, Y., Bouyakhf, E.: Boosting constraint acquisition via generalization queries. In: Proceedings of the 21st European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 99–104. IOS Press, Prague (2014)

    Google Scholar 

  9. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C., Walsh, T.: Constraint acquisition via partial queries. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 475–481. IJCAI/AAAI, Beijing (2013)

    Google Scholar 

  10. Bessiere, C., Cordier, M.: Arc-consistency and arc-consistency again. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 108–113. AAAI Press/The MIT Press, Washington, D.C. (1993)

    Google Scholar 

  11. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1), 79–89 (1999)

    Article  MATH  Google Scholar 

  12. De Bruijn, N.: Asymptotic Methods in Analysis. Dover Books on Mathematics. Dover Publications, New York (1970)

    Google Scholar 

  13. Freuder, E.C., Wallace, R.J.: Suggestion strategies for constraint-based matchmaker agents. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 192–204. Springer, Heidelberg (1998). doi:10.1007/3-540-49481-2_15

    Chapter  Google Scholar 

  14. Gent, I., Walsh, T.: CSPLib: a benchmark library for constraints. http://www.csplib.org/ (1999)

    Google Scholar 

  15. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI 2004), San Jose, CA, pp. 167–172 (2004)

    Google Scholar 

  16. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: Proceedings of the 22nd IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI 2010), Arras, France, pp. 45–52 (2010)

    Google Scholar 

  17. Mason, J.: Purdey’s general store. Dell Mag. 54, 10 (1997)

    Google Scholar 

  18. Paulin, M., Bessiere, C., Sallantin, J.: Automatic design of robot behaviors through constraint network acquisition. In: Proceedings of the 20th IEEE International Conference on Tools for Artificial Intelligence (IEEE-ICTAI 2008), Dayton, OH, pp. 275–282 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bessiere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Bessiere, C. et al. (2016). New Approaches to Constraint Acquisition. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., Pedreschi, D. (eds) Data Mining and Constraint Programming. Lecture Notes in Computer Science(), vol 10101. Springer, Cham. https://doi.org/10.1007/978-3-319-50137-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50137-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50136-9

  • Online ISBN: 978-3-319-50137-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics