Nothing Special   »   [go: up one dir, main page]

Skip to main content

Restricted Echo State Networks

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

  • 3197 Accesses

Abstract

Echo state networks are a powerful type of reservoir neural network, but the reservoir is essentially unrestricted in its original formulation. Motivated by limitations in neuromorphic hardware, we remove combinations of the four sources of memory—leaking, loops, cycles, and discrete time—to determine how these influence the suitability of the reservoir. We show that loops and cycles can replicate each other, while discrete time is a necessity. The potential limitation of energy conservation is equivalent to limiting the spectral radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Čerňanský, M., Makula, M.: Feed-forward echo state networks. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks 2005, vol. 3, pp. 1479–1482 (2005)

    Google Scholar 

  2. Čerňanský, M., Tiňo, P.: Comparison of echo state networks with simple recurrent networks and variable-length Markov models on symbolic sequences. In: Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 618–627. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74690-4_63

    Chapter  Google Scholar 

  3. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. GMD Report (2001)

    Google Scholar 

  4. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, 2nd edn, pp. 659–686. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8_36

    Chapter  Google Scholar 

  5. Sillin, O.: H., Aguilera, R., Shieh, H.-H., Avizienis, A.V., Aono, M., Stieg, A.Z., Gimzewski, J.K.: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24(38), 384004 (2013)

    Article  Google Scholar 

  6. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  7. Williams, R.J.: Training recurrent networks using the extended Kalman filter. In: International Joint Conference on Neural Networks 1992. IJCNN, vol. 4, pp. 241–246 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Stockdill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Stockdill, A., Neshatian, K. (2016). Restricted Echo State Networks. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics