Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Method to Reduce Resources for Quantum Error Correction

  • Conference paper
  • First Online:
Reversible Computation (RC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10301))

Included in the following conference series:

Abstract

In a quantum logic circuit, the minimum number of qubits required in a quantum error-correcting code (QECC) to correct a single error was shown by Laflamme to be five. Due to the presence of multi-control gates in the circuit block for a 5-qubit QECC, this block cannot be readily implemented with present day technology. Further, the fault-tolerant decomposition of the QECC circuit block requires a large number of quantum logic gates (resources). In this paper, we (i) propose a smaller 5-qubit error detection circuit which can also correct a single error in 2 of the 5 qubits, and (ii) establish how to use a 3-qubit error correction circuit to correct the single errors when detected in the other 3 qubits. This approach to quantum error-correction circuit design, functionally equivalent to a 5-qubit QECC, yields a significant reduction in the number of quantum logic gates. For a given quantum logic circuit, we also provide a scheme to decide the locations where these error detection and error correction blocks are to be placed in attaining reduction in gate requirement compared to the case where the original 5-qubit QECC block is used. A comparative study of the resource requirement for the benchmark circuits shows that the proposed method outperforms even Shor and Steane codes in terms of resources. Thus, our proposed method provides quantum error correction with minimum qubit requirement and reduced resource requirement on the average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, New York (2013)

    Book  MATH  Google Scholar 

  3. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  Google Scholar 

  4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  Google Scholar 

  6. Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73, 012340 (2006)

    Article  Google Scholar 

  7. Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-ph/9705052 (1997)

  8. Lin, C.C., Chakrabarti, A., Jha, N.K.: FTQLS: fault-tolerant quantum logic synthesis. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(6), 1350–1363 (2014)

    Article  Google Scholar 

  9. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. Quantum Inform. Sci. Contrib. Math. 68, 13–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997)

    Article  MathSciNet  Google Scholar 

  11. Majumdar, R., Basu, S., Mukhopadhyay, P., Sur-Kolay, S.: Error tracing in linear and concatenated quantum circuits. arXiv preprint arXiv:1612.08044 (2016)

  12. Suchara, M., Faruque, A., Lai, C.Y., Paz, G., Chong, F., Kubiatowicz, J.D.: Estimating the resources for quantum computation with the QuRE toolbox. Technical report, DTIC Document (2013)

    Google Scholar 

  13. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritajit Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Majumdar, R., Basu, S., Sur-Kolay, S. (2017). A Method to Reduce Resources for Quantum Error Correction. In: Phillips, I., Rahaman, H. (eds) Reversible Computation. RC 2017. Lecture Notes in Computer Science(), vol 10301. Springer, Cham. https://doi.org/10.1007/978-3-319-59936-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59936-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59935-9

  • Online ISBN: 978-3-319-59936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics