Nothing Special   »   [go: up one dir, main page]

Skip to main content

Identifying Equivalent Relation Paths in Knowledge Graphs

  • Conference paper
  • First Online:
Language, Data, and Knowledge (LDK 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10318))

Included in the following conference series:

Abstract

Relation paths are sequences of relations with inverse that allow for complete exploration of knowledge graphs in a two-way unconstrained manner. They are powerful enough to encode complex relationships between entities and are crucial in several contexts, such as knowledge base verification, rule mining, and link prediction. However, fundamental forms of reasoning such as containment and equivalence of relation paths have hitherto been ignored. Intuitively, two relation paths are equivalent if they share the same extension, i.e., set of source and target entity pairs. In this paper, we study the problem of containment as a means to find equivalent relation paths and show that it is very expensive in practice to enumerate paths between entities. We characterize the complexity of containment and equivalence of relation paths and propose a domain-independent and unsupervised method to obtain approximate equivalences ranked by a tri-criteria ranking function. We evaluate our algorithm using test cases over real-world data and show that we are able to find semantically meaningful equivalences efficiently.

S.K. Mohamed and E. Muñoz—Contributed equally to this work.

This work has been supported by the TOMOE project funded by Fujitsu Laboratories Ltd., Japan and Insight Centre for Data Analytics at National University of Ireland Galway, Ireland (supported by the Science Foundation Ireland grant 12/RC/2289).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given a two-way automaton with n states, we can construct a one-way automaton with \(\mathcal {O} (2^{n\text {log } n})\) states accepting the same language [22].

  2. 2.

    Dong et al. (2014) [7] report that 71% of the people described in Freebase have unknown place of birth, 75% have unknown nationality, and the coverage for less used relations can be even lower.

References

  1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

    Google Scholar 

  2. Baeza, P.B.: Querying graph databases. In: PODS, pp. 175–188. ACM (2013)

    Google Scholar 

  3. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive regular path queries with inverse. In: KR, pp. 176–185. Morgan Kaufmann (2000)

    Google Scholar 

  4. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular path queries. SIGMOD Rec. 32(4), 83–92 (2003)

    Article  Google Scholar 

  5. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: STOC, pp. 77–90. ACM (1977)

    Google Scholar 

  6. Consens, M.P., Mendelzon, A.O.: GraphLog: a visual formalism for real life recursion. In: PODS, pp. 404–416. ACM Press (1990)

    Google Scholar 

  7. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD, pp. 601–610. ACM (2014)

    Google Scholar 

  8. Freitas, A., da Silva, J.C.P., Curry, E., Buitelaar, P.: A distributional semantics approach for selective reasoning on commonsense graph knowledge bases. In: NLDB, Montpellier, France, 18–20 June 2014, pp. 21–32 (2014)

    Google Scholar 

  9. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

  10. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6_1

    Chapter  Google Scholar 

  11. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  12. Lao, N., Subramanya, A., Pereira, F.C.N., Cohen, W.W.: Reading the web with learned syntactic-semantic inference rules. In: EMNLP-CoNLL, pp. 1017–1026. ACL (2012)

    Google Scholar 

  13. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015)

    Google Scholar 

  14. Lin, X., Liang, Y., Guan, R.: Compositional learning of relation paths embedding for knowledge base completion. CoRR abs/1611.07232 (2016)

    Google Scholar 

  15. Lin, Y., Liu, Z., Sun, M.: Modeling relation paths for representation learning of knowledge bases. CoRR abs/1506.00379 (2015)

    Google Scholar 

  16. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: CIDR (2015). www.cidrdb.org

  17. Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  19. Mitchell, T.M., Cohen Jr., W.W., Hruschka, E.R., Talukdar, P.P., Betteridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: AAAI, pp. 2302–2310. AAAI Press (2015)

    Google Scholar 

  20. Morzy, M., Ławrynowicz, A., Zozuliński, M.: Using substitutive itemset mining framework for finding synonymous properties in linked data. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 422–430. Springer, Cham (2015). doi:10.1007/978-3-319-21542-6_27

    Chapter  Google Scholar 

  21. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In: PODS, pp. 39–50. ACM (2014)

    Google Scholar 

  22. Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata. Inf. Process. Lett. 30(5), 261–264 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Z., Gentile, A.L., Augenstein, I., Blomqvist, E., Ciravegna, F.: Mining equivalent relations from linked data. In: ACL, vol. 2, pp. 289–293. The Association for Computer Linguistics (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emir Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mohamed, S.K., Muñoz, E., Nováček, V., Vandenbussche, PY. (2017). Identifying Equivalent Relation Paths in Knowledge Graphs. In: Gracia, J., Bond, F., McCrae, J., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds) Language, Data, and Knowledge. LDK 2017. Lecture Notes in Computer Science(), vol 10318. Springer, Cham. https://doi.org/10.1007/978-3-319-59888-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59888-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59887-1

  • Online ISBN: 978-3-319-59888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics