Abstract
Relation paths are sequences of relations with inverse that allow for complete exploration of knowledge graphs in a two-way unconstrained manner. They are powerful enough to encode complex relationships between entities and are crucial in several contexts, such as knowledge base verification, rule mining, and link prediction. However, fundamental forms of reasoning such as containment and equivalence of relation paths have hitherto been ignored. Intuitively, two relation paths are equivalent if they share the same extension, i.e., set of source and target entity pairs. In this paper, we study the problem of containment as a means to find equivalent relation paths and show that it is very expensive in practice to enumerate paths between entities. We characterize the complexity of containment and equivalence of relation paths and propose a domain-independent and unsupervised method to obtain approximate equivalences ranked by a tri-criteria ranking function. We evaluate our algorithm using test cases over real-world data and show that we are able to find semantically meaningful equivalences efficiently.
S.K. Mohamed and E. Muñoz—Contributed equally to this work.
This work has been supported by the TOMOE project funded by Fujitsu Laboratories Ltd., Japan and Insight Centre for Data Analytics at National University of Ireland Galway, Ireland (supported by the Science Foundation Ireland grant 12/RC/2289).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Given a two-way automaton with n states, we can construct a one-way automaton with \(\mathcal {O} (2^{n\text {log } n})\) states accepting the same language [22].
- 2.
Dong et al. (2014) [7] report that 71% of the people described in Freebase have unknown place of birth, 75% have unknown nationality, and the coverage for less used relations can be even lower.
References
Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical Level, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1995)
Baeza, P.B.: Querying graph databases. In: PODS, pp. 175–188. ACM (2013)
Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive regular path queries with inverse. In: KR, pp. 176–185. Morgan Kaufmann (2000)
Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular path queries. SIGMOD Rec. 32(4), 83–92 (2003)
Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: STOC, pp. 77–90. ACM (1977)
Consens, M.P., Mendelzon, A.O.: GraphLog: a visual formalism for real life recursion. In: PODS, pp. 404–416. ACM Press (1990)
Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD, pp. 601–610. ACM (2014)
Freitas, A., da Silva, J.C.P., Curry, E., Buitelaar, P.: A distributional semantics approach for selective reasoning on commonsense graph knowledge bases. In: NLDB, Montpellier, France, 18–20 June 2014, pp. 21–32 (2014)
Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)
Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6_1
Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)
Lao, N., Subramanya, A., Pereira, F.C.N., Cohen, W.W.: Reading the web with learned syntactic-semantic inference rules. In: EMNLP-CoNLL, pp. 1017–1026. ACL (2012)
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015)
Lin, X., Liang, Y., Guan, R.: Compositional learning of relation paths embedding for knowledge base completion. CoRR abs/1611.07232 (2016)
Lin, Y., Liu, Z., Sun, M.: Modeling relation paths for representation learning of knowledge bases. CoRR abs/1506.00379 (2015)
Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual wikipedias. In: CIDR (2015). www.cidrdb.org
Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Mitchell, T.M., Cohen Jr., W.W., Hruschka, E.R., Talukdar, P.P., Betteridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: AAAI, pp. 2302–2310. AAAI Press (2015)
Morzy, M., Ławrynowicz, A., Zozuliński, M.: Using substitutive itemset mining framework for finding synonymous properties in linked data. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 422–430. Springer, Cham (2015). doi:10.1007/978-3-319-21542-6_27
Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In: PODS, pp. 39–50. ACM (2014)
Vardi, M.Y.: A note on the reduction of two-way automata to one-way automata. Inf. Process. Lett. 30(5), 261–264 (1989)
Zhang, Z., Gentile, A.L., Augenstein, I., Blomqvist, E., Ciravegna, F.: Mining equivalent relations from linked data. In: ACL, vol. 2, pp. 289–293. The Association for Computer Linguistics (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mohamed, S.K., Muñoz, E., Nováček, V., Vandenbussche, PY. (2017). Identifying Equivalent Relation Paths in Knowledge Graphs. In: Gracia, J., Bond, F., McCrae, J., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds) Language, Data, and Knowledge. LDK 2017. Lecture Notes in Computer Science(), vol 10318. Springer, Cham. https://doi.org/10.1007/978-3-319-59888-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-59888-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59887-1
Online ISBN: 978-3-319-59888-8
eBook Packages: Computer ScienceComputer Science (R0)