Nothing Special   »   [go: up one dir, main page]

Skip to main content

Particle Swarm Optimization Approach for the Segmentation of Retinal Vessels from Fundus Images

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

  • 2717 Accesses

Abstract

In this paper, we propose to use the Particle Swarm Optimization (PSO) algorithm to improve the Multi-Scale Line Detection (MSLD) method for the retinal blood vessel segmentation problem. The PSO algorithm is applied to find the best arrangement of scales in the basic line detector method. The segmentation performance was validated using a public high-resolution fundus images database containing healthy subjects. The optimized MSLD method demonstrates fast convergence to the optimal solution reducing the execution time by approximately 35%. For the same level of specificity, the proposed approach improves the sensitivity rate by 3.1% compared to the original MSLD method. The proposed method will allow to reduce the amount of missing vessels segments that might lead to false positives of red lesions detection in CAD systems used for diabetic retinopathy diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciulla, T.A., Amador, A.G., Zinman, B.: Diabetic retinopathy and diabetic macular edema pathophysiology, screening, and novel therapies. Diab. Care 26(9), 2653–2664 (2003)

    Article  Google Scholar 

  2. Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images - a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)

    Article  Google Scholar 

  3. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  4. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classication. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  5. Soares, J.V., Leandro, J.J., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  6. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise thresh-old probing of a matched fillter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  7. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  8. Nguyen, U.T., Bhuiyan, A., Park, L.A., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn. 46(3), 703–715 (2013)

    Article  Google Scholar 

  9. Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34, 213–227 (2010)

    Article  Google Scholar 

  10. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

    Article  Google Scholar 

  11. Emary, E., Zawbaa, H.M., Hassanien, A.E., Schaefer, G., Azar, A.T.: Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimised with cuckoo search. In: International Joint Conference on Neural Networks (IJCNN), pp. 1792–1796. IEEE (2014)

    Google Scholar 

  12. Zwiggelaar, R., Astley, S.M., Boggis, C.R., Taylor, C.J.: Linear structures in mammographic images: detection and classification. IEEE Trans. Med. Imaging 23(9), 1077–1086 (2004)

    Article  Google Scholar 

  13. Kennedy, J., Eberhart, R.: A new optimizer using particle swarm theory. In: Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  14. Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  15. Huo, Y., Zhuang, Y., Gu, J., Ni, S.: Elite-guided multi-objective artificial bee colony algorithm. Appl. Soft Comput. 32, 199–210 (2015)

    Article  Google Scholar 

  16. Odstrcilik, J., Kolar, R., Budai, A., Hornegger, J., Jan, J., Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., Angelopoulou, E.: Retinal vessel segmentationby improved matched filtering: evaluation on a new high-resolution fundusimage database. IET Image Process. 7(4), 373–383 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Khomri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Khomri, B., Christodoulidis, A., Djerou, L., Babahenini, M.C., Cheriet, F. (2017). Particle Swarm Optimization Approach for the Segmentation of Retinal Vessels from Fundus Images. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics