Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Better Trajectory Shape Descriptor for Human Activity Recognition

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10317))

Included in the following conference series:

Abstract

Sparse representation is one of the most popular methods for human activity recognition. Sparse representation describes a video by a set of independent descriptors. Each of these descriptors usually captures the local information of the video. These features are then mapped to another space, using Fisher Vectors, and an SVM is used for clustering them. One of the sparse representation methods proposed in the literature uses trajectories as features. Trajectories have been shown to be discriminative in many previous works on human activity recognition. In this paper, a more formal definition is given to trajectories and a new more effective trajectory shape descriptor is proposed. We tested the proposed method against our challenging dataset and demonstrated through experiments that our new trajectory descriptor outperforms the previously existing main shape descriptor with a good margin. For example, in one case the obtained results had a 5.58% improvement, compared to the existing trajectory shape descriptor. We run our tests over sparse feature sets, and we are able to reach comparable results to a dense sampling method, with fewer computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2011)

    Google Scholar 

  2. Habashi, P., Boufama, B., Ahmad, I.S.: The bag of micro-movements for human activity recognition. In: Kamel, M., Campilho, A. (eds.) ICIAR 2015. LNCS, vol. 9164, pp. 269–276. Springer, Cham (2015). doi:10.1007/978-3-319-20801-5_29

    Chapter  Google Scholar 

  3. Mohammadi, E., Wu, Q.J., Saif, M.: Human action recognition by fusing the outputs of individual classifiers. In: 2016 13th Conference on Computer and Robot Vision (CRV), pp. 335–341. IEEE (2016)

    Google Scholar 

  4. Wang, Y., Tran, V., Hoai, M.: Evolution-preserving dense trajectory descriptors. arXiv preprint arXiv:1702.04037 (2017)

  5. Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vis. 119(3), 219–238 (2016)

    Article  MathSciNet  Google Scholar 

  6. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 3551–3558. IEEE (2013)

    Google Scholar 

  7. Chang, C.-C. Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

  8. Laptev, I., Lindeberg, T.: Interest point detection and scale selection in space-time. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 372–387. Springer, Heidelberg (2003). doi:10.1007/3-540-44935-3_26

    Chapter  Google Scholar 

  9. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  10. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  11. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of the 15th international conference on Multimedia, pp. 357–360. ACM (2007)

    Google Scholar 

  12. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). doi:10.1007/11744023_34

    Chapter  Google Scholar 

  13. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  14. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  15. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006). doi:10.1007/11744047_33

    Chapter  Google Scholar 

  16. Wang, H., Kläser, A., Schmid, C., Liu, C.-L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  17. Mohammadi, E., Wu, Q.J., Saif, M.: Human activity recognition using an ensemble of support vector machines. In: 2016 International Conference on High Performance Computing and Simulation (HPCS), pp. 549–554. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Habashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Habashi, P., Boufama, B., Ahmad, I.S. (2017). A Better Trajectory Shape Descriptor for Human Activity Recognition. In: Karray, F., Campilho, A., Cheriet, F. (eds) Image Analysis and Recognition. ICIAR 2017. Lecture Notes in Computer Science(), vol 10317. Springer, Cham. https://doi.org/10.1007/978-3-319-59876-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59876-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59875-8

  • Online ISBN: 978-3-319-59876-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics