Abstract
The emergence of electronic health records has highlighted the need for semantic standards for representation of observations in laboratory medicine. Two such standards are LOINC, with a focus on detailed encoding of lab tests, and SNOMED CT, which is more general, including the representation of qualitative and ordinal test results. In this paper we will discuss how lab observation entries can be represented using SNOMED CT. We use resources provided by the Regenstrief Institute and SNOMED International collaboration, which formalize LOINC terms as SNOMED CT post-coordinated expressions. We demonstrate the benefits brought by SNOMED CT to classify lab tests. We then propose a SNOMED CT based model for lab observation entries aligned with the BioTopLite2 (BTL2) upper level ontology. We provide examples showing how a model designed with no ontological foundation can produce misleading interpretations of inferred observation results. Our solution based on a BTL2 conformant formal interpretation of SNOMED CT concepts allows representing lab test without creating unintended models. We argue in favour of an ontologically explicit bridge between compositional clinical terminologies, in order to safely use their formal representations in intelligent systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the following, we will abbreviate BioTopLite by BTL2 and SNOMED CT by SCT. In lower case, these acronyms will also be used as namespace identifiers.
References
Blumenthal, D.: Launching HITECH. N. Engl. J. Med. 362, 382–385 (2010)
Logical Observation Identifiers Names and Codes (LOINC®) — LOINC. https://loinc.org/
McDonald, C.J., Huff, S.M., Suico, J.G., Hill, G., Leavelle, D., Aller, R., Forrey, A., Mercer, K., DeMoor, G., Hook, J., Williams, W., Case, J., Maloney, P.: LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin. Chem. 49, 624–633 (2003)
Schulz, S., Suntisrivaraporn, B., Baader, F., Boeker, M.: SNOMED reaching its adolescence: ontologists’ and logicians’ health check. Int. J. Med. Inf. 78(Suppl. 1), S86–S94 (2009)
Cornet, R., de Keizer, N.: Forty years of SNOMED: a literature review. BMC Med. Inform. Decis. Mak. 8, S2 (2008)
SNOMED CT Document Library - SNOMED CT Document Library - IHTSDO Confluence. https://confluence.ihtsdotools.org/display/DOC/SNOMED+CT+Document+Library
Santamaria, S.L., Ashrafi, F., Spackman, K.A.: Linking LOINC and SNOMED CT: a cooperative approach to enhance each terminology and facilitate co-usage. In: ICBO 2014, pp. 99–101 (2014)
Regenstrief: Alpha (phase 3) Edition of Draft LOINC-SNOMED CT Mappings and Expression Associations. http://loinc.org/news/alpha-phase-3-edition-of-draft-loinc-snomed-ct-mappings-and-expression-associations-now-available.html/
Kazakov, Y., Krötzsch, M., Simančík, F.: ELK: a reasoner for OWL EL ontologies. Technical report, University of Oxford (2012)
Beisswanger, E., Schulz, S., Stenzhorn, H., Hahn, U.: BioTop: an upper domain ontology for the life sciences. Appl. Ontol. 3, 205–212 (2008)
Spackman, K., Karlsson, D.: Observables and investigation procedures redesign. SNOMED International (2015)
Schulz, S., Martínez-Costa, C.: Harmonizing SNOMED CT with BioTopLite: an exercise in principled ontology alignment. In: MedInfo, pp. 832–836 (2015)
Smith, B., Ceusters, W., Klagges, B., Köhler, J., Kumar, A., Lomax, J., Mungall, C., Neuhaus, F., Rector, A.L., Rosse, C.: Relations in biomedical ontologies. Genome Biol. 6, R46–R61 (2005)
LOINC Committee: LOINC User’s Guide. Regenstrief Institute, Indianapolis (2016)
Schulz, S., Martínez-Costa, C., Karlsson, D., Cornet, R., Brochhausen, M., Rector, A.L.: An ontological analysis of reference in health record statements. In: FOIS, pp. 289–302 (2014)
Mary, M., Soualmia, L.F., Gansel, X.: Projection des propriétés d’une ontologie pour la classification d’une ressource terminologique. Journée Francophones sur les Ontologies, Bordeaux, 1–12 (2016)
Schulz, S., Cornet, R., Spackman, K.: Consolidating SNOMED CT’s ontological commitment. Appl. Ontol. 6, 1–11 (2011)
Rhoads, D.D., Sintchenko, V., Rauch, C.A., Pantanowitz, L.: Clinical microbiology informatics. Clin. Microbiol. Rev. 27, 1025–1047 (2014)
Barry, J., Brown, A., Ensor, V., Lakhani, U., Petts, D., Warren, C., Winstanley, T.: Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. J. Antimicrob. Chemother. 51, 1191–1202 (2003)
Bright, T.J., Furuya, E.Y., Kuperman, G.J., Cimino, J.J., Bakken, S.: Development and evaluation of an ontology for guiding appropriate antibiotic prescribing. J. Biomed. Inform. 45, 120–128 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mary, M., Soualmia, L.F., Gansel, X., Darmoni, S., Karlsson, D., Schulz, S. (2017). Ontological Representation of Laboratory Test Observables: Challenges and Perspectives in the SNOMED CT Observable Entity Model Adoption. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-59758-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59757-7
Online ISBN: 978-3-319-59758-4
eBook Packages: Computer ScienceComputer Science (R0)