Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Typicality-Based Recommendation Approach Leveraging Demographic Data

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10333))

Included in the following conference series:

Abstract

In this paper, we introduce a new recommendation approach leveraging demographic data. Items are associated with the audience who liked them, and we consider similarity based on audiences. More precisely, recommendations are computed on the basis of the (fuzzy) typical demographic properties (age, sex, occupation, etc.) of the audience associated with every item. Experiments on the MovieLens dataset show that our approach can find predictions that other tested state-of-the-art systems cannot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://grouplens.org/datasets/movielens/.

References

  1. Bouchon-Meunier, B., Coletti, G., Lesot, M.-J., Rifqi, M.: Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 1–10. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14049-5_1

    Chapter  Google Scholar 

  2. Cai, Y., Leung, H.F., Li, Q., Min, H., Tang, J., Li, J.: Typicality-based collaborative filtering recommendation. IEEE Trans. Knowl. Data Eng. 26(3), 766–779 (2014)

    Article  Google Scholar 

  3. Dubois, D., Prade, H.: Weighted minimum and maximum operations in fuzzy set theory. Inf. Sci. 39, 205–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Funk, S.: Netflix update: try this at home (2006). http://sifter.org/~simon/journal/20061211.html

  5. Jeckmans, A.J.P., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R.L., Tang, Q.: Privacy in recommender systems. In: Ramzan, N., van Zwol, R., Lee, J.-S., Clüver, K., Hua, X.-S. (eds.) Social Media Retrieval, pp. 263–281. Springer, London (2013)

    Chapter  Google Scholar 

  6. Krulwich, B.: LIFESTYLE FINDER: intelligent user profiling using large-scale demographic data. AI Mag. 18(2), 37 (1997)

    Google Scholar 

  7. Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, pp. 471–475 (2005)

    Google Scholar 

  8. Mcsherry, D.: Explanation in recommender systems. Artif. Intell. Rev. 24(2), 179–197 (2005)

    Article  MATH  Google Scholar 

  9. Osherson, D., Smith, E.E.: On typicality and vagueness. Cognition 64(2), 189–206 (1997)

    Article  Google Scholar 

  10. Pappis, C., Karacapilidis, N.: A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst. 56(2), 171–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)

    Article  Google Scholar 

  12. Pivert, O., Smits, G., Jaun, H.: Finding similar objects in relational databases - an association-based fuzzy approach. In: Flexible Query Answering Systems - 10th International Conference, FQAS 2013, Proceedings, pp. 425–436 (2013)

    Google Scholar 

  13. Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook, 2nd edn. Springer, Boston (2015)

    MATH  Google Scholar 

  14. Vozalis, M.G., Margaritis, K.G.: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering. Inf. Sci. 177(15), 3017–3037 (2007)

    Article  Google Scholar 

  15. Wang, Y., Chan, S.C.F., Ngai, G.: Applicability of demographic recommender system to tourist attractions: a case study on TripAdvisor. In: Proceeding of WI-IAT 2012, pp. 97–101 (2012)

    Google Scholar 

  16. Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscating user gender based on ratings. In: Proceedings of the 6th ACM Conference on Recommender Systems - RecSys 2012, pp. 195–202 (2012)

    Google Scholar 

  17. Yager, R.R.: A note on a fuzzy measure of typicality. Int. J. Intell. Syst. 12(3), 233–249 (1997)

    Article  MATH  Google Scholar 

  18. Zadeh, L.: A computational theory of dispositions. Int. J. Intell. Syst. 2, 39–63 (1987)

    MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the French DGE (Direction Générale des Entreprises) under the project ODIN (Open Data INtelligence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélien Moreau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moreau, A., Pivert, O., Smits, G. (2017). A Typicality-Based Recommendation Approach Leveraging Demographic Data. In: Christiansen, H., Jaudoin, H., Chountas, P., Andreasen, T., Legind Larsen, H. (eds) Flexible Query Answering Systems. FQAS 2017. Lecture Notes in Computer Science(), vol 10333. Springer, Cham. https://doi.org/10.1007/978-3-319-59692-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59692-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59691-4

  • Online ISBN: 978-3-319-59692-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics