Abstract
In this paper, we introduce a new recommendation approach leveraging demographic data. Items are associated with the audience who liked them, and we consider similarity based on audiences. More precisely, recommendations are computed on the basis of the (fuzzy) typical demographic properties (age, sex, occupation, etc.) of the audience associated with every item. Experiments on the MovieLens dataset show that our approach can find predictions that other tested state-of-the-art systems cannot.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bouchon-Meunier, B., Coletti, G., Lesot, M.-J., Rifqi, M.: Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 1–10. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14049-5_1
Cai, Y., Leung, H.F., Li, Q., Min, H., Tang, J., Li, J.: Typicality-based collaborative filtering recommendation. IEEE Trans. Knowl. Data Eng. 26(3), 766–779 (2014)
Dubois, D., Prade, H.: Weighted minimum and maximum operations in fuzzy set theory. Inf. Sci. 39, 205–210 (1986)
Funk, S.: Netflix update: try this at home (2006). http://sifter.org/~simon/journal/20061211.html
Jeckmans, A.J.P., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R.L., Tang, Q.: Privacy in recommender systems. In: Ramzan, N., van Zwol, R., Lee, J.-S., Clüver, K., Hua, X.-S. (eds.) Social Media Retrieval, pp. 263–281. Springer, London (2013)
Krulwich, B.: LIFESTYLE FINDER: intelligent user profiling using large-scale demographic data. AI Mag. 18(2), 37 (1997)
Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, pp. 471–475 (2005)
Mcsherry, D.: Explanation in recommender systems. Artif. Intell. Rev. 24(2), 179–197 (2005)
Osherson, D., Smith, E.E.: On typicality and vagueness. Cognition 64(2), 189–206 (1997)
Pappis, C., Karacapilidis, N.: A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets Syst. 56(2), 171–174 (1993)
Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)
Pivert, O., Smits, G., Jaun, H.: Finding similar objects in relational databases - an association-based fuzzy approach. In: Flexible Query Answering Systems - 10th International Conference, FQAS 2013, Proceedings, pp. 425–436 (2013)
Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook, 2nd edn. Springer, Boston (2015)
Vozalis, M.G., Margaritis, K.G.: Using SVD and demographic data for the enhancement of generalized Collaborative Filtering. Inf. Sci. 177(15), 3017–3037 (2007)
Wang, Y., Chan, S.C.F., Ngai, G.: Applicability of demographic recommender system to tourist attractions: a case study on TripAdvisor. In: Proceeding of WI-IAT 2012, pp. 97–101 (2012)
Weinsberg, U., Bhagat, S., Ioannidis, S., Taft, N.: BlurMe: inferring and obfuscating user gender based on ratings. In: Proceedings of the 6th ACM Conference on Recommender Systems - RecSys 2012, pp. 195–202 (2012)
Yager, R.R.: A note on a fuzzy measure of typicality. Int. J. Intell. Syst. 12(3), 233–249 (1997)
Zadeh, L.: A computational theory of dispositions. Int. J. Intell. Syst. 2, 39–63 (1987)
Acknowledgments
This work has been partially funded by the French DGE (Direction Générale des Entreprises) under the project ODIN (Open Data INtelligence).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Moreau, A., Pivert, O., Smits, G. (2017). A Typicality-Based Recommendation Approach Leveraging Demographic Data. In: Christiansen, H., Jaudoin, H., Chountas, P., Andreasen, T., Legind Larsen, H. (eds) Flexible Query Answering Systems. FQAS 2017. Lecture Notes in Computer Science(), vol 10333. Springer, Cham. https://doi.org/10.1007/978-3-319-59692-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-59692-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59691-4
Online ISBN: 978-3-319-59692-1
eBook Packages: Computer ScienceComputer Science (R0)