Nothing Special   »   [go: up one dir, main page]

Skip to main content

Attribute-Based Encryption with Granular Revocation

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2016)

Abstract

Attribute-based encryption (ABE) enables an access control mechanism over encrypted data by specifying access policies over attributes associated with private keys or ciphertexts, which is a promising solution to protect data privacy in cloud storage services. As an encryption system that involves many data users whose attributes might change over time, it is essential to provide a mechanism to selectively revoke data users’ attributes in an ABE system. However, most of the previous revokable ABE schemes consider how to disable revoked data users to access (newly) encrypted data in the system, and there are few of them that can be used to revoke one or more attributes of a data user while keeping this user active in the system. Due to this observation, in this paper, we focus on designing ABE schemes supporting selective revocation, i.e., a data user’s attributes can be selectively revoked, which we call ABE with granular revocation (ABE-GR). Our idea is to utilize the key separation technique, such that for any data user, key elements corresponding to his/her attributes are generated separately but are linkable to each other. To begin with, we give a basic ABE-GR scheme to accomplish selective revocation using the binary tree data structure. Then, to further improve the efficiency, we present a server-aided ABE-GR scheme, where an untrusted server is introduced to the system to mitigate data users’ workloads during the key update phase. Both of the ABE-GR constructions are formally proved to be secure under our defined security model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are two complimentary forms of ABE: CP-ABE and key-policy ABE (KP-ABE). In a KP-ABE system, the situation is reversed that the keys are associated with the access policies and the ciphertexts are associated with the attributes. In the rest of this paper, unless otherwise specified, what we talk about is CP-ABE.

  2. 2.

    Note that direct revocation can be done immediately without the key update process which asks for the communication from the AA to all the non-revoked users over all the time periods, but it requires all the data owners to keep the current revocation list. This makes the system impurely attribute-based, since data owners in the attribute-based setting create ciphertext based only on attributes without caring revocation. In this paper, unless otherwise specified, the revocation mechanism we talk about is indirect revocation.

  3. 3.

    The server is untrusted in the sense that it honestly follows the protocol but without holding any secret information (i.e., it may collude with data users). Besides, all operations done by the server can be performed by anyone, including data users (i.e., any dishonest behaviour from the server can be easily detected).

  4. 4.

    This pair of user-user-keys can also be generated by the AA, but this requires a secure channel between each data user and the AA for private key distribution.

  5. 5.

    In this paper, unless otherwise specified, “semi-trusted” means that the corresponding entity is disallowed to collude with the malicious data users.

  6. 6.

    This does not affect the security of these schemes, because such attacks are not covered by their security models.

  7. 7.

    Here gi,x is always predefined in the PrivKG algorithm.

  8. 8.

    Please contact the author for the full version.

References

  1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–300. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10868-6_17

    Chapter  Google Scholar 

  2. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1_16

    Chapter  Google Scholar 

  3. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24632-9_19

    Chapter  Google Scholar 

  4. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology, June 1996

    Google Scholar 

  5. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, 27–31 October 2008, pp. 417–426. ACM (2008)

    Google Scholar 

  6. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public key certificates and security capabilities. In: 10th USENIX Security Symposium, Washington, D.C., USA, 13–17 August 2001. USENIX (2001)

    Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  8. Cui, H., Deng, R.H.: Revocable and decentralized attribute-based encryption. Comput. J. 59(8), 1220–1235 (2016). doi:10.1093/comjnl/bxw007

    Article  Google Scholar 

  9. Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg (2003). doi:10.1007/3-540-36563-X_13

    Chapter  Google Scholar 

  10. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005). doi:10.1007/11593447_27

    Chapter  Google Scholar 

  11. Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, Giuseppe F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_47

    Google Scholar 

  12. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, Kenneth G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  13. Li, J., Li, J., Chen, X., Jia, C., Lou, W.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Q., Xiong, H., Zhang, F.: Broadcast revocation scheme in composite-order bilinear group and its application to attribute-based encryption. IJSN 8(1), 1–12 (2013)

    Article  Google Scholar 

  15. Liang, K., Liu, Joseph K., Wong, Duncan S., Susilo, W.: An efficient cloud-based revocable identity-based proxy re-encryption scheme for public clouds data sharing. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 257–272. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9_15

    Google Scholar 

  16. Libert, B., Quisquater, J.: Efficient revocation and threshold pairing based cryptosystems. In: Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, 13–16 July 2003, pp. 163–171. ACM (2003)

    Google Scholar 

  17. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00730-9_2

    Chapter  Google Scholar 

  18. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_3

    Chapter  Google Scholar 

  19. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryption. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 286–304. Springer, Cham (2015). doi:10.1007/978-3-319-24174-6_15

    Chapter  Google Scholar 

  20. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_13

    Chapter  Google Scholar 

  21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.1007/11426639_27

    Chapter  Google Scholar 

  22. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 216–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_14

    Chapter  Google Scholar 

  23. Wan, Z., Liu, J., Deng, R.H.: HASBE: a hierarchical attribute-based solution for flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 7(2), 743–754 (2012)

    Article  Google Scholar 

  24. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  25. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained cryptographic access control over cloud data. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 293–308. Springer, Cham (2015). doi:10.1007/978-3-319-27659-5_21

    Chapter  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Singapore National Research Foundation under the NCR Award Number NRF2014NCR-NCR001-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Cui, H., Deng, R.H., Ding, X., Li, Y. (2017). Attribute-Based Encryption with Granular Revocation. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds) Security and Privacy in Communication Networks. SecureComm 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-59608-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59608-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59607-5

  • Online ISBN: 978-3-319-59608-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics