Abstract
Attribute-based encryption (ABE) enables an access control mechanism over encrypted data by specifying access policies over attributes associated with private keys or ciphertexts, which is a promising solution to protect data privacy in cloud storage services. As an encryption system that involves many data users whose attributes might change over time, it is essential to provide a mechanism to selectively revoke data users’ attributes in an ABE system. However, most of the previous revokable ABE schemes consider how to disable revoked data users to access (newly) encrypted data in the system, and there are few of them that can be used to revoke one or more attributes of a data user while keeping this user active in the system. Due to this observation, in this paper, we focus on designing ABE schemes supporting selective revocation, i.e., a data user’s attributes can be selectively revoked, which we call ABE with granular revocation (ABE-GR). Our idea is to utilize the key separation technique, such that for any data user, key elements corresponding to his/her attributes are generated separately but are linkable to each other. To begin with, we give a basic ABE-GR scheme to accomplish selective revocation using the binary tree data structure. Then, to further improve the efficiency, we present a server-aided ABE-GR scheme, where an untrusted server is introduced to the system to mitigate data users’ workloads during the key update phase. Both of the ABE-GR constructions are formally proved to be secure under our defined security model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There are two complimentary forms of ABE: CP-ABE and key-policy ABE (KP-ABE). In a KP-ABE system, the situation is reversed that the keys are associated with the access policies and the ciphertexts are associated with the attributes. In the rest of this paper, unless otherwise specified, what we talk about is CP-ABE.
- 2.
Note that direct revocation can be done immediately without the key update process which asks for the communication from the AA to all the non-revoked users over all the time periods, but it requires all the data owners to keep the current revocation list. This makes the system impurely attribute-based, since data owners in the attribute-based setting create ciphertext based only on attributes without caring revocation. In this paper, unless otherwise specified, the revocation mechanism we talk about is indirect revocation.
- 3.
The server is untrusted in the sense that it honestly follows the protocol but without holding any secret information (i.e., it may collude with data users). Besides, all operations done by the server can be performed by anyone, including data users (i.e., any dishonest behaviour from the server can be easily detected).
- 4.
This pair of user-user-keys can also be generated by the AA, but this requires a secure channel between each data user and the AA for private key distribution.
- 5.
In this paper, unless otherwise specified, “semi-trusted” means that the corresponding entity is disallowed to collude with the malicious data users.
- 6.
This does not affect the security of these schemes, because such attacks are not covered by their security models.
- 7.
Here gi,x is always predefined in the PrivKG algorithm.
- 8.
Please contact the author for the full version.
References
Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–300. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10868-6_17
Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1_16
Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24632-9_19
Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel Institute of Technology, June 1996
Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 2008 ACM Conference on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA, 27–31 October 2008, pp. 417–426. ACM (2008)
Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public key certificates and security capabilities. In: 10th USENIX Security Symposium, Washington, D.C., USA, 13–17 August 2001. USENIX (2001)
Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_13
Cui, H., Deng, R.H.: Revocable and decentralized attribute-based encryption. Comput. J. 59(8), 1220–1235 (2016). doi:10.1093/comjnl/bxw007
Ding, X., Tsudik, G.: Simple identity-based cryptography with mediated RSA. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 193–210. Springer, Heidelberg (2003). doi:10.1007/3-540-36563-X_13
Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005). doi:10.1007/11593447_27
Horváth, M.: Attribute-based encryption optimized for cloud computing. In: Italiano, Giuseppe F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46078-8_47
Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, Kenneth G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4_31
Li, J., Li, J., Chen, X., Jia, C., Lou, W.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)
Li, Q., Xiong, H., Zhang, F.: Broadcast revocation scheme in composite-order bilinear group and its application to attribute-based encryption. IJSN 8(1), 1–12 (2013)
Liang, K., Liu, Joseph K., Wong, Duncan S., Susilo, W.: An efficient cloud-based revocable identity-based proxy re-encryption scheme for public clouds data sharing. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 257–272. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9_15
Libert, B., Quisquater, J.: Efficient revocation and threshold pairing based cryptosystems. In: Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, 13–16 July 2003, pp. 163–171. ACM (2003)
Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00730-9_2
Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_3
Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryption. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 286–304. Springer, Cham (2015). doi:10.1007/978-3-319-24174-6_15
Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_13
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.1007/11426639_27
Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 216–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7_14
Wan, Z., Liu, J., Deng, R.H.: HASBE: a hierarchical attribute-based solution for flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 7(2), 743–754 (2012)
Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19379-8_4
Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained cryptographic access control over cloud data. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 293–308. Springer, Cham (2015). doi:10.1007/978-3-319-27659-5_21
Acknowledgements
This research work is supported by the Singapore National Research Foundation under the NCR Award Number NRF2014NCR-NCR001-012.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Cui, H., Deng, R.H., Ding, X., Li, Y. (2017). Attribute-Based Encryption with Granular Revocation. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds) Security and Privacy in Communication Networks. SecureComm 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-59608-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-59608-2_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59607-5
Online ISBN: 978-3-319-59608-2
eBook Packages: Computer ScienceComputer Science (R0)