Nothing Special   »   [go: up one dir, main page]

Skip to main content

Phase Transition for Maximum Not-All-Equal Satisfiability

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10336))

Included in the following conference series:

  • 584 Accesses

Abstract

Phase transition is a dramatic transition from one state to another state when a particular parameter varies. This paper aims to study the phase transition of maximum not-all-equal satisfiability problem (Max NAE SAT), an optimization of not-all-equal satisfiability problem (NAE SAT). Given a conjunctive normal formula (CNF) F with n variables and rn k-clauses (the clause exactly contains k literals), we use first-moment method to obtain an upper bound for f(nrn) the expectation of the maximum number of NAE-satisfied clauses of random Max NAE k-SAT. In addition, we also consider the phase transition of decision version of random Max NAE k-SAT—bounded not-all-equal satisfiability problem (NAE k-SAT(b)). We demonstrate that there is a phase transition point \(r_{k,b}\) separating the region where almost all NAE k-SAT(b) instances can be solved from the region where almost all NAE k-SAT(b) instances can’t be solved. Furthermore, we analyze the upper bound and lower bound for \(r_{k,b}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, K., Li, W.: The SAT phase transition. Sci. China Ser. E 42, 494–501 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sly, A., Sun, N., Zhang, Y.: The number of solutions for random regular NAE-SAT. In: FOCS (2016)

    Google Scholar 

  3. Larrosa, J., Heras, F., De Givry, S.: A logical approach to efficient Max-SAT solving. Artif. Intell. 172(2–3), 204–233 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic phase transitions. Nature 400, 133–137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random boolean expressions. Science 264, 1297–1301 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems. J. Artif. Intell. Res. 12, 93–103 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Fan, Y., Shen, J., Xu, K.: A general model and thresholds for random constraint satisfaction problems original. Artif. Intell. 193, 1–17 (2012)

    Article  MATH  Google Scholar 

  8. Gent, I.P., Walsh, T.: The TSP phase transition. Artif. Intell. 88(1–2), 349–358 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Walsh, T.: Where are the really hard manipulation problems? the phase transition in manipulating the veto rule. In: Proceedings of the 21st International Jont Conference on Artifical intelligence, Morgan Kaufmann Publishers Inc. (2009)

    Google Scholar 

  10. Huang, P., Yin, M.: An upper (lower) bound for Max (Min) CSP. Sci. China Inf. Sci. 57(7), 1–9 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Gao, J., Wang, J., Yin, M.: Experimental analyses on phase transitions in compiling satisfiability problems. Sci. China Inf. Sci. 58, 1–11 (2015)

    Google Scholar 

  12. Zhou, J., Yin, M., Li, X., Wang, J.: Phase transitions of EXPSPACE-complete problems: a further step. Int. J. Found. Comput. Sci. 23(01), 173–184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Achlioptas, D., Chtcherba, A., Istrate, G., Moore, C.: The phase transition in 1-in-k SAT and NAE 3-SAT. In: SODA, pp. 721–722 (2001)

    Google Scholar 

  14. Achlioptas, D.: The asymptotic order of the random k-SAT threshold. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS02), pp. 779–788 (2002)

    Google Scholar 

  15. Coja-Oglan, A., Panagiotou, K.: Catching the k-NAE SAT threshold. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 899–908 (May 2012)

    Google Scholar 

  16. Ding, J., Sly, A., Sun, N.: Satisfiability threshold for random regular NAE-SAT. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 814–822 (May 2014)

    Google Scholar 

  17. Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435, 759–764 (2005)

    Article  Google Scholar 

  18. Coppersmith, D., et al.: Random MAX SAT, random MAX CUT, and their phase transitions. Random Struct. Algorithms 24, 502–545 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, X.L., Gao, Z.S., Xu, K.: A tighter upper bound for random MAX 2-SAT. Inf. Process. Lett. 111, 115–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 153–167. Springer, Heidelberg (2001). doi:10.1007/3-540-45578-7_11

    Chapter  Google Scholar 

  21. Bailey, D.D., Kolaitis, P.G.: Phase transitions of bounded satisfiability problems. In: IJCAI, pp. 1187–1193 (2003)

    Google Scholar 

Download references

Acknowledgement

The authors of this paper wish to extend their sincere gratitude to all anonymous reviewers for their efforts. This work was supported in part by NSFC (under Grant Nos.61503074, 61403076, 61402070, and 61403077), the Natural Science Foundation for Youths of JiLin Province (20160520104JH) and (NCET-13-0724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhou, J., Hu, S., Zou, T., Yin, M. (2017). Phase Transition for Maximum Not-All-Equal Satisfiability. In: Xiao, M., Rosamond, F. (eds) Frontiers in Algorithmics. FAW 2017. Lecture Notes in Computer Science(), vol 10336. Springer, Cham. https://doi.org/10.1007/978-3-319-59605-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59605-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59604-4

  • Online ISBN: 978-3-319-59605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics