Abstract
Physiology and neural systems researchers revealed that the visual system is attracted by some parts of an image more than others. Different computational models were developed to simulate the visual system. In this paper we propose a video saliency model that helps to predict and detect the regions of interest in each video frame. We use a supervoxel segmentation as an indicator of dynamic objects. Based on the observation that dynamic objects attract attention when an observer watches a video sequence, supervoxel segmentation provides a first estimation for what belongs to foreground and background. Then, a saliency score is attributed to each supervoxel according to its motion distinctiveness. Experiments over two benchmark datasets, using several evaluation metrics have shown that our proposed method outperforms five saliency detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1597–1604. IEEE (2009)
Chang, J., Wei, D., Fisher, J.W.: A video representation using temporal superpixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2051–2058 (2013)
Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)
Fukuchi, K., Miyazato, K., Kimura, A., Takagi, S., Yamato, J.: Saliency-based video segmentation with graph cuts and sequentially updated priors. In: IEEE International Conference on Multimedia and Expo, pp. 638–641. IEEE (2009)
Galasso, F., Cipolla, R., Schiele, B.: Video segmentation with superpixels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 760–774. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_57
Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Decorrelation and distinctiveness provide with human-like saliency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 343–354. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04697-1_32
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in neural information processing systems, pp. 545–552 (2006)
Hou, X., Zhang, L.: Dynamic visual attention: searching for coding length increments. In: Advances in Neural Information Processing Systems, pp. 681–688 (2009)
Itti, L.: Visual salience. Scholarpedia 2, 3327 (2007)
Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 631–637. IEEE (2005)
Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656–671. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_43
Kim, J., Han, D., Tai, Y.-W., Kim, J.: Salient region detection via high-dimensional color transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 883–890 (2014)
Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: International Conference on Computer Vision, pp. 2214–2219. IEEE (2011)
Koch, C., Ullamn, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Vaina, L.M. (ed.) Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience. Synthese Library: Studies in Epistemology, Logic, Methodology, and Philosophy of Science, vol. 188, pp. 115–141. Springer, Dordrecht (1987)
Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2192–2199 (2013)
Lou, J., Ren, M., Wang, H.: Regional principal color based saliency detection. PloS one 9, e112475 (2014)
Lu, J., Xu, R., Corso, J.J.: Human action segmentation with hierarchical supervoxel consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3762–3771. IEEE (2015)
Mancas, M., Riche, N., Leroy, J., Gosselin, B.: Abnormal motion selection in crowds using bottom-up saliency. In: 18th IEEE International Conference on Image Processing, pp. 229–232. IEEE (2011)
Mauthner, T., Possegger, H., Waltner, G., Bischof, H.: Encoding based saliency detection for videos and images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2494–2502 (2015)
Oneata, D., Revaud, J., Verbeek, J., Schmid, C.: Spatio-temporal object detection proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 737–752. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_48
Rahman, A., Houzet, D., Pellerin, D., Marat, S., Guyader, N.: Parallel implementation of a spatio-temporal visual saliency model. J. Real Time Image Process. 6, 3–14 (2011)
Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_27
Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 979–986 (2013)
Singh, A., Chu, C.-H.H., Pratt, M.: Learning to predict video saliency using temporal superpixels. In: 4th International Conference on Pattern Recognition Applications and Methods (2015)
Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)
Xu, C., Whitt, S., Corso, J.J.: Flattening supervoxel hierarchies by the uniform entropy slice. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2240–2247 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Zhong, S.-H., Liu, Y., Ren, F., Zhang, J., Ren, T.: Video saliency detection via dynamic consistent spatio-temporal attention modelling. In: AAAI (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Kalboussi, R., Abdellaoui, M., Douik, A. (2018). Video Saliency Using Supervoxels. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-59480-4_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59479-8
Online ISBN: 978-3-319-59480-4
eBook Packages: EngineeringEngineering (R0)