Nothing Special   »   [go: up one dir, main page]

Skip to main content

Video Saliency Using Supervoxels

  • Conference paper
  • First Online:
Intelligent Interactive Multimedia Systems and Services 2017 (KES-IIMSS-18 2018)

Abstract

Physiology and neural systems researchers revealed that the visual system is attracted by some parts of an image more than others. Different computational models were developed to simulate the visual system. In this paper we propose a video saliency model that helps to predict and detect the regions of interest in each video frame. We use a supervoxel segmentation as an indicator of dynamic objects. Based on the observation that dynamic objects attract attention when an observer watches a video sequence, supervoxel segmentation provides a first estimation for what belongs to foreground and background. Then, a saliency score is attributed to each supervoxel according to its motion distinctiveness. Experiments over two benchmark datasets, using several evaluation metrics have shown that our proposed method outperforms five saliency detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1597–1604. IEEE (2009)

    Google Scholar 

  2. Chang, J., Wei, D., Fisher, J.W.: A video representation using temporal superpixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2051–2058 (2013)

    Google Scholar 

  3. Cheng, M.-M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.-M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37, 569–582 (2015)

    Article  Google Scholar 

  4. Fukuchi, K., Miyazato, K., Kimura, A., Takagi, S., Yamato, J.: Saliency-based video segmentation with graph cuts and sequentially updated priors. In: IEEE International Conference on Multimedia and Expo, pp. 638–641. IEEE (2009)

    Google Scholar 

  5. Galasso, F., Cipolla, R., Schiele, B.: Video segmentation with superpixels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 760–774. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_57

    Chapter  Google Scholar 

  6. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Decorrelation and distinctiveness provide with human-like saliency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 343–354. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04697-1_32

    Chapter  Google Scholar 

  7. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in neural information processing systems, pp. 545–552 (2006)

    Google Scholar 

  8. Hou, X., Zhang, L.: Dynamic visual attention: searching for coding length increments. In: Advances in Neural Information Processing Systems, pp. 681–688 (2009)

    Google Scholar 

  9. Itti, L.: Visual salience. Scholarpedia 2, 3327 (2007)

    Article  Google Scholar 

  10. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 631–637. IEEE (2005)

    Google Scholar 

  11. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656–671. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_43

    Google Scholar 

  12. Kim, J., Han, D., Tai, Y.-W., Kim, J.: Salient region detection via high-dimensional color transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 883–890 (2014)

    Google Scholar 

  13. Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: International Conference on Computer Vision, pp. 2214–2219. IEEE (2011)

    Google Scholar 

  14. Koch, C., Ullamn, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Vaina, L.M. (ed.) Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience. Synthese Library: Studies in Epistemology, Logic, Methodology, and Philosophy of Science, vol. 188, pp. 115–141. Springer, Dordrecht (1987)

    Chapter  Google Scholar 

  15. Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2192–2199 (2013)

    Google Scholar 

  16. Lou, J., Ren, M., Wang, H.: Regional principal color based saliency detection. PloS one 9, e112475 (2014)

    Article  Google Scholar 

  17. Lu, J., Xu, R., Corso, J.J.: Human action segmentation with hierarchical supervoxel consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3762–3771. IEEE (2015)

    Google Scholar 

  18. Mancas, M., Riche, N., Leroy, J., Gosselin, B.: Abnormal motion selection in crowds using bottom-up saliency. In: 18th IEEE International Conference on Image Processing, pp. 229–232. IEEE (2011)

    Google Scholar 

  19. Mauthner, T., Possegger, H., Waltner, G., Bischof, H.: Encoding based saliency detection for videos and images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2494–2502 (2015)

    Google Scholar 

  20. Oneata, D., Revaud, J., Verbeek, J., Schmid, C.: Spatio-temporal object detection proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 737–752. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_48

    Google Scholar 

  21. Rahman, A., Houzet, D., Pellerin, D., Marat, S., Guyader, N.: Parallel implementation of a spatio-temporal visual saliency model. J. Real Time Image Process. 6, 3–14 (2011)

    Article  Google Scholar 

  22. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_27

    Chapter  Google Scholar 

  23. Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 979–986 (2013)

    Google Scholar 

  24. Singh, A., Chu, C.-H.H., Pratt, M.: Learning to predict video saliency using temporal superpixels. In: 4th International Conference on Pattern Recognition Applications and Methods (2015)

    Google Scholar 

  25. Wang, W., Shen, J., Porikli, F.: Saliency-aware geodesic video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3395–3402 (2015)

    Google Scholar 

  26. Xu, C., Whitt, S., Corso, J.J.: Flattening supervoxel hierarchies by the uniform entropy slice. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2240–2247 (2013)

    Google Scholar 

  27. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)

    Google Scholar 

  28. Zhong, S.-H., Liu, Y., Ren, F., Zhang, J., Ren, T.: Video saliency detection via dynamic consistent spatio-temporal attention modelling. In: AAAI (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahma Kalboussi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kalboussi, R., Abdellaoui, M., Douik, A. (2018). Video Saliency Using Supervoxels. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds) Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-319-59480-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59480-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59479-8

  • Online ISBN: 978-3-319-59480-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics