Abstract
Information retrieval on the (social) web moves from a pure term-frequency-based approach to an enhanced method that includes conceptual multimodal features on a semantic level. In this paper, we present an approach for semantic-based keyword search and focus especially on its optimization to scale it to real-world sized collections in the social media domain. Furthermore, we present a faceted indexing framework and architecture that relates content to semantic concepts to be indexed and searched semantically. We study the use of textual concepts in a social media domain and observe a significant improvement from using a concept-based solution for keyword searching. We address the problem of time-complexity that is a critical issue for concept-based methods by focusing on optimization to enable larger and more real-world style applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agirrea, E., Baneab, C., Cardiec, C., Cerd, D., Diabe, M., Gonzalez-Agirrea, A., Guof, W., Mihalceab, R., Rigaua, G., Wiebeg, J.: Semeval-2014 task 10: multilingual semantic textual similarity. In: SemEval (2014)
Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM (JACM) 45(6), 891–923 (1998)
Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 238–247 (2014)
Clinchant, S., Ah-Pine, J., Csurka, G.: Semantic combination of textual and visual information in multimedia retrieval. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval (2011)
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision (at ECCV) (2004)
Dang, V., Bendersky, M., Croft, W.: Two-stage learning to rank for information retrieval. In: Proceedings of European Conference on Information Retrieval (2013)
Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. (JASIS) 41, 391 (1990)
Depeursinge, A., Müller, H.: Fusion techniques for combining textual and visual information retrieval. In: Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF, vol. 32, pp. 95–114. Springer, Heidelberg (2010)
Eskevich, M., Jones, G.J., Aly, R., et al.: Multimedia information seeking through search and hyperlinking. In: Proceedings of the Annual ACM International Conference on Multimedia Retrieval (2013)
Ionescu, B., Popescu, A., Lupu, M., Gînsca, A.L., Boteanu, B., Müller, H.: Div150cred: a social image retrieval result diversification with user tagging credibility dataset. In: ACM Multimedia Systems Conference Series (2015)
Ionescu, B., Radu, A.-L., Menéndez, M., Müller, H., Popescu, A., Loni, B.: Div400: a social image retrieval result diversification dataset. In: Proceedings of ACM Multimedia Systems Conference Series (2014)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Jurgens, D., Pilehvar, M.T., Navigli, R.: Semeval-2014 task 3: cross-level semantic similarity. In: SemEval 2014, p. 17 (2014)
Liu, C., Wang, Y.-M.: On the connections between explicit semantic analysis and latent semantic analysis. In: Proceedings of Conference on Information and Knowledge Management, New York, USA (2012)
Liu, N., Dellandréa, E., Chen, L., Zhu, C., Zhang, Y., Bichot, C.-E., Bres, S., Tellez, B.: Multimodal recognition of visual concepts using histograms of textual concepts and selective weighted late fusion scheme. Computer Vision and Image Underst. 117, 493–512 (2013)
Magalhaes, J., Rüger, S.: Information-theoretic semantic multimedia indexing. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 619–626. ACM (2007)
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute (2011)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint 2013 arXiv:1301.3781
Paramita, M.L., Grubinger, M.: Photographic image retrieval. In: Müller, H., Clough, P., Deselaers, T., Caputo, B. (eds.) ImageCLEF, vol. 32, pp. 141–162. Springer, Heidelberg (2010)
Pham, T.-T., Maillot, N., Lim, J.-H., Chevallet, J.-P.: Latent semantic fusion model for image retrieval and annotation. In: Proceedings of Conference on Information and Knowledge Management (2007)
Rekabsaz, N., Bierig, R., Ionescu, B., Hanbury, A., Lupu, M.: On the use of statistical semantics for metadata-based social image retrieval. In: Proceedings of the 13th International Workshop on Content-Based Multimedia Indexing (CBMI) (2015)
Sabetghadam, S., Lupu, M., Bierig, R., Rauber, A.: A combined approach of structured and non-structured IR in multimodal domain. In: Proceedings of ACM International Conference on Multimedia Retrieval (2014)
Sahlgren, M.: An introduction to random indexing. In: Methods and Applications of Semantic Indexing Workshop in the Proceedings of Terminology and Knowledge Engineering (2005)
Thomee, B., Popescu, A.: Overview of the ImageCLEF 2012 Flickr photo annotation and retrieval task. In: Proceedings of Cross-Language Evaluation Forum (CLEF) (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Rekabsaz, N., Bierig, R., Lupu, M., Hanbury, A. (2017). Toward Optimized Multimodal Concept Indexing. In: Nguyen, N., Kowalczyk, R., Pinto, A., Cardoso, J. (eds) Transactions on Computational Collective Intelligence XXVI. Lecture Notes in Computer Science(), vol 10190. Springer, Cham. https://doi.org/10.1007/978-3-319-59268-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-59268-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59267-1
Online ISBN: 978-3-319-59268-8
eBook Packages: Computer ScienceComputer Science (R0)