Nothing Special   »   [go: up one dir, main page]

Skip to main content

Minimum Birkhoff-von Neumann Decomposition

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

Motivated by the applications in routing in data centers, we study the problem of expressing an \(n \times n\) doubly stochastic matrix as a linear combination using the smallest number of (sub)permutation matrices. The Birkhoff-von Neumann decomposition theorem proves that there exists such a decomposition, but does not give a representation with the smallest number of permutation matrices. In particular, we consider the case when the optimal decomposition uses a constant number of matrices. We show that the problem is not fixed parameter tractable, and design a logarithmic approximation to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approximate version of caratheodory’s theorem. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 361–369. ACM (2015)

    Google Scholar 

  2. Bojja, S., Mohammad Alizadeh, V., Viswanath, P.: Costly circuits, submodular schedules and approximate carathéodory theorems. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pp. 75–88. ACM (2016)

    Google Scholar 

  3. Brualdi, R.A.: Notes on the birkhoff algorithm for doubly stochastic matrices. Can. Math. Bull. 25(2), 191–199 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brualdi, R.A., Gibson, P.M.: Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function. J. Comb. Theor. Ser. A 22(2), 194–230 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, C.-S., Chen, W.-J., Huang, H.-Y.: On service guarantees for input-buffered crossbar switches: a capacity decomposition approach by Birkhoff and von Neumann. In: Seventh International Workshop on Quality of Service, IWQoS 1999, pp. 79–86. IEEE (1999)

    Google Scholar 

  6. Chen, K., Singla, A., Singh, A., Ramachandran, K., Lei, X., Zhang, Y., Wen, X., Chen, Y.: Osa: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw. 22(2), 498–511 (2014)

    Article  Google Scholar 

  7. Dufossé, F., Uçar, B.: Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl. 497, 108–115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdos, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Infinite Finite Sets 10(2), 609–627 (1975)

    MathSciNet  MATH  Google Scholar 

  9. Farrington, N., Porter, G., Radhakrishnan, S., Hajabdolali Bazzaz, H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010)

    Article  Google Scholar 

  10. Ghobadi, M., Mahajan, R., Phanishayee, A., Devanur, N., Kulkarni, J., Ranade, G., Blanche, P.-A., Rastegarfar, H., Glick, M., Kilper, D.: Projector: agile reconfigurable data center interconnect. In: Proceedings of the Conference on ACM SIGCOMM Conference, pp. 216–229. ACM (2016)

    Google Scholar 

  11. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Mukerjee, M.K., Li, C., Feltman, N., Papen, G., Savage, S., Seshan, S., Voelker, G.M., Andersen, D.G., Kaminsky, M., et al.: Scheduling techniques for hybrid circuit/packet networks. In: ACM CoNEXT (2015)

    Google Scholar 

  13. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Soc., Providence (2009)

    MATH  Google Scholar 

  14. Marcus, M., Ree, R.: Diagonals of doubly stochastic matrices. Q. J. Math. 10(1), 296–302 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matoušek, J.: Lectures on Discrete Geometry, vol. 108. Springer, New York (2002)

    Book  MATH  Google Scholar 

  16. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2), 11 (2010)

    Article  MATH  Google Scholar 

  17. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca Raton (2010)

    MATH  Google Scholar 

  18. Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T., Fainman, Y., Papen, G., Vahdat, A.: Integrating microsecond circuit switching into the data center, vol. 43. ACM (2013)

    Google Scholar 

  19. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3(7), 25–30 (1964)

    MathSciNet  Google Scholar 

  20. Wang, G., Andersen, D.G., Kaminsky, M., Konstantina Papagiannaki, T.S., Ng, M.K., Ryan, M.: c-through: part-time optics in data centers. In: ACM SIGCOMM Computer Communication Review, vol. 40, pp. 327–338. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kulkarni, J., Lee, E., Singh, M. (2017). Minimum Birkhoff-von Neumann Decomposition. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics