Abstract
Motivated by the applications in routing in data centers, we study the problem of expressing an \(n \times n\) doubly stochastic matrix as a linear combination using the smallest number of (sub)permutation matrices. The Birkhoff-von Neumann decomposition theorem proves that there exists such a decomposition, but does not give a representation with the smallest number of permutation matrices. In particular, we consider the case when the optimal decomposition uses a constant number of matrices. We show that the problem is not fixed parameter tractable, and design a logarithmic approximation to the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approximate version of caratheodory’s theorem. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 361–369. ACM (2015)
Bojja, S., Mohammad Alizadeh, V., Viswanath, P.: Costly circuits, submodular schedules and approximate carathéodory theorems. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pp. 75–88. ACM (2016)
Brualdi, R.A.: Notes on the birkhoff algorithm for doubly stochastic matrices. Can. Math. Bull. 25(2), 191–199 (1982)
Brualdi, R.A., Gibson, P.M.: Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function. J. Comb. Theor. Ser. A 22(2), 194–230 (1977)
Chang, C.-S., Chen, W.-J., Huang, H.-Y.: On service guarantees for input-buffered crossbar switches: a capacity decomposition approach by Birkhoff and von Neumann. In: Seventh International Workshop on Quality of Service, IWQoS 1999, pp. 79–86. IEEE (1999)
Chen, K., Singla, A., Singh, A., Ramachandran, K., Lei, X., Zhang, Y., Wen, X., Chen, Y.: Osa: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw. 22(2), 498–511 (2014)
Dufossé, F., Uçar, B.: Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl. 497, 108–115 (2016)
Erdos, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Infinite Finite Sets 10(2), 609–627 (1975)
Farrington, N., Porter, G., Radhakrishnan, S., Hajabdolali Bazzaz, H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010)
Ghobadi, M., Mahajan, R., Phanishayee, A., Devanur, N., Kulkarni, J., Ranade, G., Blanche, P.-A., Rastegarfar, H., Glick, M., Kilper, D.: Projector: agile reconfigurable data center interconnect. In: Proceedings of the Conference on ACM SIGCOMM Conference, pp. 216–229. ACM (2016)
Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)
Liu, H., Mukerjee, M.K., Li, C., Feltman, N., Papen, G., Savage, S., Seshan, S., Voelker, G.M., Andersen, D.G., Kaminsky, M., et al.: Scheduling techniques for hybrid circuit/packet networks. In: ACM CoNEXT (2015)
Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Soc., Providence (2009)
Marcus, M., Ree, R.: Diagonals of doubly stochastic matrices. Q. J. Math. 10(1), 296–302 (1959)
Matoušek, J.: Lectures on Discrete Geometry, vol. 108. Springer, New York (2002)
Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2), 11 (2010)
Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca Raton (2010)
Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T., Fainman, Y., Papen, G., Vahdat, A.: Integrating microsecond circuit switching into the data center, vol. 43. ACM (2013)
Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3(7), 25–30 (1964)
Wang, G., Andersen, D.G., Kaminsky, M., Konstantina Papagiannaki, T.S., Ng, M.K., Ryan, M.: c-through: part-time optics in data centers. In: ACM SIGCOMM Computer Communication Review, vol. 40, pp. 327–338. ACM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kulkarni, J., Lee, E., Singh, M. (2017). Minimum Birkhoff-von Neumann Decomposition. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-59250-3_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59249-7
Online ISBN: 978-3-319-59250-3
eBook Packages: Computer ScienceComputer Science (R0)