Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Scheduling Coflows

(Extended Abstract)

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

  • 1756 Accesses

Abstract

Applications designed for data-parallel computation frameworks such as MapReduce usually alternate between computation and communication stages. Coflow scheduling is a recent popular networking abstraction introduced to capture such application-level communication patterns in datacenters. In this framework, a datacenter is modeled as a single non-blocking switch with m input ports and m output ports. A coflow j is a collection of flow demands \(\{d^j_{io}\}_{i \in m, o \in m}\) that is said to be complete once all of its requisite flows have been scheduled.

We consider the offline coflow scheduling problem with and without release times to minimize the total weighted completion time. Coflow scheduling generalizes the well studied concurrent open shop scheduling problem and is thus NP-hard. Qiu, Stein and Zhong [15] obtain the first constant approximation algorithms for this problem via LP rounding and give a deterministic \(\frac{67}{3}\)-approximation and a randomized \((9 + \frac{16\sqrt{2}}{3}) \approx 16.54\)-approximation algorithm. In this paper, we give a combinatorial algorithm that yields a deterministic 5-approximation algorithm with release times, and a deterministic 4-approximation for the case without release time.

This work is supported by NSF grant CNS 156019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://hadoop.apache.org

  2. http://cs.umd.edu/~samir/ipco17-fullversion.pdf

  3. Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and applications to scheduling problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_22

    Chapter  Google Scholar 

  4. Chen, Z.-L., Hall, N.G.: Supply chain scheduling: conflict and cooperation in assembly systems. Oper. Res. 55(6), 1072–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chowdhury, M., Stoica, I. Coflow: a networking abstraction for cluster applications. In: ACM Workshop on Hot Topics in Networks, pp. 31–36. ACM (2012)

    Google Scholar 

  6. Chowdhury, M., Stoica, I.: Efficient coflow scheduling without prior knowledge. In: SIGCOMM, pp. 393–406. ACM (2015)

    Google Scholar 

  7. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with varys. In: SIGCOMM, SIGCOMM 2014, pp. 443–454. ACM, New York (2014)

    Google Scholar 

  8. Davis, J.M., Gandhi, R., Kothari, V.H.: Combinatorial algorithms for minimizing the weighted sum of completion times on a single machine. Oper. Res. Lett. 41(2), 121–125 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  10. Garg, N., Kumar, A., Pandit, V.: Order scheduling models: hardness and algorithms. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 96–107. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77050-3_8

    Chapter  Google Scholar 

  11. Khuller, S., Li, J., Sturmfels, P., Sun, K., Venkat, P.: Select, permute: an improved online framework for scheduling to minimize weighted completion time (2016) (Submitted)

    Google Scholar 

  12. Leung, J.Y.-T., Li, H., Pinedo, M.: Scheduling orders for multiple product types to minimize total weighted completion time. Discrete Appl. Math. 155(8), 945–970 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, S., Yu, H., Zhao, Y., Wang, S., Yu, S., Li, L.: Towards practical, near-optimal coflow scheduling for data center networks. IEEE Trans. Parallel Distrib. Syst. PP(99), 1 (2016)

    Google Scholar 

  14. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimizing the sum of weighted completion times in a concurrent open shop. Oper. Res. Lett. 38(5), 390–395 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, Z., Stein, C., Zhong, Y.: Minimizing the total weighted completion time of coflows in datacenter networks. In: SPAA 2015, pp. 294–303. ACM, New York (2015)

    Google Scholar 

  16. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program. 58(1–3), 263–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sachdeva, S., Saket, R.: Optimal inapproximability for scheduling problems via structural hardness for hypergraph vertex cover. In: IEEE Conference on Computational Complexity, pp. 219–229. IEEE (2013)

    Google Scholar 

  18. Wang, G., Cheng, T.E.: Customer order scheduling to minimize total weighted completion time. Omega 35(5), 623–626 (2007)

    Article  Google Scholar 

  19. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. HotCloud 10, 10 (2010)

    Google Scholar 

  20. Zhao, Y., Chen, K., Bai, W., Yu, M., Tian, C., Geng, Y., Zhang, Y., Li, D., Wang, S. Rapier: integrating routing and scheduling for coflow-aware data center networks. In: INFOCOM, pp. 424–432. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ahmadi, S., Khuller, S., Purohit, M., Yang, S. (2017). On Scheduling Coflows. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics