Abstract
In this paper we describe a pseudo-3D vision-based dual approach for Machine-Awareness in indoor environment. The so-called duality is provided by color and depth cameras of Kinect system, which presents an appealing potential for 3D robots vision. Placing the human-machine (including human-robot) interaction as a primary outcome of the intended visual Machine-Awareness in investigated system, we aspire proffering the machine the autonomy in awareness about its surrounding environment. Combining pseudo-3D vision, and salient objects’ detection algorithms, the investigated approach seeks an autonomous detection of relevant items in 3D environment. The pseudo-3D perception allows reducing computational complexity inherent to the 3D vision context into a 2D computational task by processing 3D visual information within a 2D-images’ framework. The statistical foundation of the investigated approach proffers it a solid and comprehensive theoretical basis, holding out a bottom-up nature making the issued system unconstrained regarding prior hypothesis. We provide experimental results validating the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Greeff, J., Delaunay, F., Belpaeme, T.: Human-robot interaction in concept acquisition: a computational model. In: Proceedings of International Conference on Development & Learning, pp. 1–6 (2009)
Araki, T., Nakamura, T., Nagai, T., Funakoshi, K., Nakano, M., Iwahashi, N.: Autonomous acquisition of multimodal information for online object concept formation by robots. In: Proceedings of IEEE/IROS, pp. 1540–1547 (2011)
Kinect camera http://www.xbox.com/en-US/kinect/default.htm
Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)
Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia Mag. 19(2), 4–10 (2012)
Khoshelham, K., Elberink, S.O.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)
Camplani, M., Mantecon, T., Salgad, L.: Depth-color fusion strategy for 3-D scene modeling with kinect. IEEE Trans. Cybern. 43(6), 1560–1571 (2013)
Lloyd, R., Closkey, S.M.: Recognition of 3D package shapes for single camera metrology. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (IEEE-WACV 2014), pp. 99–106 (2014)
Skalski, A., Machura, B.: Metrological analysis of microsoft kinect in the context of object localization. J. Metril. Measure. Syst. 22(4), 469–478 (2015)
Zolkiewski, S., Pioskowik, D.: Robot control and online programming by human gestures using a kinect motion sensor. In: Rocha, Á., Correia, A.M., Tan, F.B., Stroetmann, K.A. (eds.) New Perspectives in Information Systems and Technologies, Volume 1. AISC, vol. 275, pp. 593–604. Springer, Cham (2014). doi:10.1007/978-3-319-05951-8_56
Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the microsoft kinect. IEEE J. Biomed. Health Inf. 19(1), 290–301 (2015)
González-Jorge, H., Zancajo, S., González-Aguilera, D., Arias, P.: Application of kinect gaming sensor in forensic science. J. Forensic Sci. 60(1), 206–211 (2015)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1597–1604 (2009)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Adv. Neural. Inf. Process. Syst. 19, 545–552 (2007)
Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient region detection and segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79547-6_7
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2001)
Liang, Z., Chi, Z., Fu, H., Feng, D.: Salient object detection using content-sensitive hypergraph representation and partitioning. Pattern Rec. 45(11), 3886–3901 (2012)
Ramik, D.M., Sabourin, C., Madani, K.: Hybrid salient object extraction approach with automatic estimation of visual attention scale. In: Proceedings of IEEE SITIS, pp. 438–445 (2011)
Ramik, D.M., Sabourin, C., Moreno, R., Madani, K.: A machine learning based intelligent vision system for autonomous object detection and recognition. J. Appl. Intell. 40(2), 358–375 (2014)
Moreno, R., Ramik, D.M., Graña, M., Madani, K.: Image segmentation on the spherical coordinate representation of the RGB color space. IET Image Proc. 6(9), 1275–1283 (2012)
Desingh, K., Madhava Krishna, K., Rajan, D., Jawahar, C.V.: Depth really matters: improving visual salient region detection with depth. In: Proceedings of 24th British Machine Vision Conference (BMVC 2013), Bristol, UK, pp. 98.1–98.11 (2013)
Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_7
Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: Proceedings of International Conference on Internet Multimedia Computing and Service (ICIMCS 2014), Xiamen, China, pp. 23–27 (2014)
Tang, Y., Tong, R., Tang, M., Zhang, Y.: Depth incorporating with color improves salient object detection. Vis. Comput. 32(1), 111–121 (2016)
Bertasius, G., Park, H.S., Shi, J.: Exploiting egocentric object prior for 3D saliency detection (2015). Preprint arXiv:1511.02682, arxiv.org
Cheng, M.M., Mitra, N.J., Huang, X.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)
Riche, N., Duvinage, M., Mancas, M., Gosselin, B., Dutoit, T.: Saliency and human fixations: state-of-the-art and study of comparison metrics. In: Proceedings of IEEE ICCV, pp. 1153–1160 (2013)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fraihat, H., Madani, K., Sabourin, C. (2017). A Pseudo-3D Vision-Based Dual Approach for Machine-Awareness in Indoor Environment Combining Multi-resolution Visual Information. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-59147-6_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59146-9
Online ISBN: 978-3-319-59147-6
eBook Packages: Computer ScienceComputer Science (R0)