Nothing Special   »   [go: up one dir, main page]

Skip to main content

How to Reduce Classification Error in ERP-Based BCI: Maximum Relative Areas as a Feature for P300 Detection

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10306))

Included in the following conference series:

  • 3203 Accesses

Abstract

Currently, one of the challenges in a Brain Computer Interface (BCI) technologies is the improvement real-time event-related potential (ERP) detection. Variability and low signal-to-noise ratio (SNR) impair detection methods. We hypothesized that if in a P300-based BCI we find the electrodes with the maximum relative voltage area (the “maximum relative” term refers to the area within each trial, but not between trials) where a P300 can be located, we will improve the performance of a classifier and reduce the number of trials necessary to achieve 100% success. We propose a method that calculates successively the maximum relative voltage areas in the P300 region of the EEG signal for each stimulus. In this way, differences between a target and a non-target stimulus are maximized. This method was tested with a linear classifier (LDA), known for its good performance and low computational cost. We observed that a single electrode with maximum relative voltage area in a P300 region can give more information than the traditional 4 electrode measurement. The preliminary results show that by detecting appropriate characteristics in the EEG signal, we can reduce the error by trial as well as the number of electrodes. The detection of the maximum relative voltage area in the EEG electrodes is a characteristic that can contribute to increase the SNR and decrease the prediction error with the smallest number of trials in the P300-based BCI systems. This type of methods that seek specific characteristics in the signals can also contribute to the management of the variability present in the BCI systems. This method can be used both for an online and offline analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blankertz, B., Muller, K.R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schlogl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schroder, M., Birbaumer, N.: The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. IEEE Trans. Biomed. Eng. 51(6), 1044–1051 (2004)

    Article  Google Scholar 

  2. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.-R.: Single-trial analysis and classification of ERP components–a tutorial. NeuroImage 56(2), 814–825 (2011)

    Article  Google Scholar 

  3. Boksem, M.A.S., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention: an ERP study. Cogn. Brain. Res. 25(1), 107–116 (2005)

    Article  Google Scholar 

  4. Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000)

    Article  Google Scholar 

  5. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  6. Kahneman, D.: Attention and effort. Citeseer (1973)

    Google Scholar 

  7. Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: BCI competition 2003-data set IIB: support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51(6), 1073–1076 (2004)

    Article  Google Scholar 

  8. Käthner, I., Wriessnegger, S.C., Müller-Putz, G.R., Kübler, A., Halder, S.: Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol. Psychol. 102, 118–129 (2014)

    Article  Google Scholar 

  9. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the P300 speller. J. Neural Eng. 3(4), 299–305 (2006)

    Article  Google Scholar 

  10. Mak, J.N., Arbel, Y., Minett, J.W., McCane, L.M., Yuksel, B., Ryan, D., Thompson, D., Bianchi, L., Erdogmus, D.: Optimizing the P300-based brain-computer interface: current status, limitations and future directions. J. Neural Eng. 8(2), 025003 (2011)

    Article  Google Scholar 

  11. McCann, M.T., Thompson, D.E., Syed, Z.H., Huggins, J.E.: Electrode subset selection methods for an EEG-based P300 brain-computer interface. Disabil. Rehabil. Assistive Technol. 10(3), 216–220 (2015)

    Article  Google Scholar 

  12. Polich, J.: Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 118(10), 2128–2148 (2007)

    Article  Google Scholar 

  13. Rakotomamonjy, A., Guigue, V.: BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomed. Eng. 55(3), 1147–1154 (2008)

    Article  Google Scholar 

  14. Salvaris, M., Sepulveda, F.: Visual modifications on the P300 speller BCI paradigm. J. Neural Eng. 6(4), 046011 (2009)

    Article  Google Scholar 

  15. Squires, N.K., Squires, K.C., Hillyard, S.A.: Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 38(4), 387–401 (1975)

    Article  Google Scholar 

  16. Sutton, S., Braren, M., Joseph, Z., John, E.R.: Evoked-potential correlates of stimulus uncertainty. Science 150(3700), 1187–1188 (1965)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Spanish projects of Ministerio de Economía y Competitividad/FEDER TIN2014-54580-R, DPI2015-65833-P (http://www.mineco.gob.es/) and Predoctoral Research Grants 2015-AR2Q9086 of the Government of Ecuador through the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinicio Changoluisa or Francisco B. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Changoluisa, V., Varona, P., Rodriguez, F.B. (2017). How to Reduce Classification Error in ERP-Based BCI: Maximum Relative Areas as a Feature for P300 Detection. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2017. Lecture Notes in Computer Science(), vol 10306. Springer, Cham. https://doi.org/10.1007/978-3-319-59147-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59147-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59146-9

  • Online ISBN: 978-3-319-59147-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics