Abstract
This paper focuses on two types of novel nanomaterials based on ordered mesoporous silica designed for applications in artificial intelligence and IT technologies: molecular neural network and super dense magnetic memories. There’s no doubt that electronics needs new solutions for the further development. Nanotechnology comes here with the help. Especially nanostructured functional materials can help solve the problem of miniaturization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghdam, M.H., Heidari, S.: Feature selection using particle swarm optimization in text categorization. J. Artif. Intell. Soft Comput. Res. 5(4), 231–238 (2015)
Bas, E.: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting. J. Artif. Intell. Soft Comput. Res. 6(1), 5–11 (2016)
Bello, O., Holzmann, J., Yaqoob, T., Teodoriu, C.: Application of artificial intelligence methods in drilling system design and operations: a review of the state of the art. J. Artif. Intell. Soft Comput. Res. 5(2), 121–139 (2015)
Bertini Junior, J.R., Nicoletti, M.D.C.: Enhancing constructive neural network performance using functionally expanded input data. J. Artif. Intell. Soft Comput. Res. 6(2), 119–131 (2016)
Cpalka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 212–219. Springer, Heidelberg (2006). doi:10.1007/11785231_23
Cpalka, K.: Design of Interpretable Fuzzy Systems, vol. 684. Springer, Heidelberg (2017)
Cpałka, K., Zalasiński, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)
Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56(7), 665–667 (1990)
Drexler, K.E., Minsky, M.: Engines of Creation. Fourth Estate, London (1990)
El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5(4), 239–245 (2015)
Giraldo, L., López, B., Pérez, L., Urrego, S., Sierra, L., Mesa, M.: Mesoporous silica applications. In: Macromolecular symposia, vol. 258, pp. 129–141. Wiley Online Library (2007)
Hopfield, J.J., Feinstein, D., Palmer, R.: ‘unlearning’ has a stabilizing effect in collective memories (1983)
Hopfield, J.J., Tank, D.W., et al.: Computing with neural circuits - a model. Science 233(4764), 625–633 (1986)
Hueso, L.E., Pruneda, J.M., Ferrari, V., Burnell, G., Valdés-Herrera, J.P., Simons, B.D., Littlewood, P.B., Artacho, E., Fert, A., Mathur, N.D.: Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445(7126), 410–413 (2007)
Lan, K., Sekiyama, K.: Autonomous viewpoint selection of robot based on aesthetic evaluation of a scene. J. Artif. Intell. Soft Comput. Res. 6(4), 255–265 (2016)
Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 217–232. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_20
Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 523–534. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_48
Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9120, pp. 247–260. Springer, Cham (2015). doi:10.1007/978-3-319-19369-4_23
Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118 (2016)
Lis, T.: Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallogr. Sect. B Struct. Crystallogr. Crystal Chem. 36(9), 2042–2046 (1980)
Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Chaotic states induced by resetting process in izhikevich neuron model. J. Artif. Intell. Soft Comput. Res. 5(2), 109–119 (2015)
Patgiri, C., Sarma, M., Sarma, K.K.: A class of neuro-computational methods for assamese fricative classification. J. Artif. Intell. Soft Comput. Res. 5(1), 59–70 (2015)
Prasad, M., Liu, Y.T., Li, D.L., Lin, C.T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with tsk-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Rutkowski, L., Cpalka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP 2002, vol. 4, pp. 1857–1861. IEEE (2002)
Rutkowski, L., Cpalka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1031–1036. IEEE (2004)
Sugiyama, H.: Pulsed power network based on decentralized intelligence for reliable and lowloss electrical power distribution. J. Artif. Intell. Soft Comput. Res. 5(2), 97–108 (2015)
Szczypta, J., Łapa, K., Shao, Z.: Aspects of the selection of the structure and parameters of controllers using selected population based algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8467, pp. 440–454. Springer, Cham (2014). doi:10.1007/978-3-319-07173-2_38
Walcarius, A., Sibottier, E., Etienne, M., Ghanbaja, J.: Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 6(8), 602–608 (2007)
Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier. In: Selected Topics in Computer Science Applications, pp. 38–53 (2011)
Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 137–146. Springer, Cham (2016). doi:10.1007/978-3-319-28567-2_12
Zalasiński, M., Cpałka, K.: New approach for the on-line signature verification based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7895, pp. 342–350. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38610-7_32
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS, vol. 7894, pp. 493–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38658-9_44
Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS, vol. 8468, pp. 216–230. Springer, Cham (2014). doi:10.1007/978-3-319-07176-3_20
Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 232–246. Springer, Cham (2016). doi:10.1007/978-3-319-39384-1_21
Aknowledgement
Financial support for this investigation has been provided by the National Centre of Science (Grant-No: 2015/17/N/ST5/03328).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Laskowska, M., Laskowski, Ł., Jelonkiewicz, J., Piech, H., Galkowski, T., Boullanger, A. (2017). Porous Silica Templated Nanomaterials for Artificial Intelligence and IT Technologies. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science(), vol 10246. Springer, Cham. https://doi.org/10.1007/978-3-319-59060-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-319-59060-8_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59059-2
Online ISBN: 978-3-319-59060-8
eBook Packages: Computer ScienceComputer Science (R0)