Nothing Special   »   [go: up one dir, main page]

Skip to main content

Novel Computational Techniques for Thin-Layer Chromatography (TLC) Profiling and TLC Profile Similarity Scoring

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation (BDAS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 716))

  • 1369 Accesses

Abstract

Thin-layer chromatography (TLC) is an experimental separation technique for multi-compound mixtures widely applied in various fields of industry and research. In contrast to comparable techniques, TLC is straightforward, cost- and time-efficient, and well-applicable in field operations due to its flexibility. In TLC, after applying a mixture sample to the adsorbent layer on the TLC plate, the compounds ascent the plate at different rates due to their individual physicochemical characteristics, whereas separation is eventually achieved.

In this paper, we present novel computational techniques for automated TLC plate photograph profiling and fast TLC profile similarity scoring that allow advanced database accessibility for experimental TLC data. The presented methodology thus provides a toolset for automated comparison of plate profiles with gold standard or baseline profile databases. Impurities or sub-standard deviations can be readily identified. Hence, these techniques can be of great value by supporting the pharmaceutical quality assessment process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In most software tools and programming languages, 256 color levels are implemented.

References

  1. Akbari, A., Albregtsen, F., Jakobsen, K.S.: Automatic lane detection and separation in one dimensional gel images using continuous wavelet transform. Anal. Methods 2(9), 1360 (2010). http://dx.doi.org/10.1039/c0ay00167h

    Article  Google Scholar 

  2. Bernard-Savary, P., Poole, C.F.: Instrument platforms for thin-layer chromatography. J. Chromatogr. A 1421, 184–202 (2015). http://dx.doi.org/10.1016/j.chroma.2015.08.002

    Article  Google Scholar 

  3. Feng, D.F., Doolittle, R.F.: [21] progressive alignment of amino acid sequences and construction of phylogenetic trees from them. Methods Enzymol. 266, 368–382 (1996). Elsevier BV. http://dx.doi.org/10.1016/S0076-6879(96)66023-6

    Article  Google Scholar 

  4. Heinke, F., Schildbach, S., Stockmann, D., Labudde, D.: eProS-a database and toolbox for investigating protein sequence-structure-function relationships through energy profiles. Nucleic Acids Res. 41(D1), D320–D326 (2012). http://dx.doi.org/10.1093/nar/gks1079

    Article  Google Scholar 

  5. Hemmateenejad, B., Mobaraki, N., Shakerizadeh-Shirazi, F., Miri, R.: Multivariate image analysis-thin layer chromatography (MIA-TLC) for simultaneous determination of co-eluting components. Analyst 135(7), 1747 (2010). http://dx.doi.org/10.1039/C0AN00078G

    Article  Google Scholar 

  6. Johnsson, R., Träff, G., Sundén, M., Ellervik, U.: Evaluation of quantitative thin layer chromatography using staining reagents. J. Chromatogr. A 1164(1–2), 298–305 (2007). http://dx.doi.org/10.1016/j.chroma.2007.07.029

    Article  Google Scholar 

  7. Kerr, E., West, C., Hartwell, S.K.: Quantitative TLC-image analysis of urinary creatinine using iodine staining and RGB values. J. Chromatogr. Sci. 54(4), 639–646 (2015). http://dx.doi.org/10.1093/chromsci/bmv183

    Article  Google Scholar 

  8. Moreira, B., Sousa, A., Mendonça, A.M., Campilho, A.: Automatic lane segmentation in TLC images using the continuous wavelet transform. Comput. Math. Methods Med. 2013, 1–19 (2013). http://dx.doi.org/10.1155/2013/218415

    Article  MathSciNet  MATH  Google Scholar 

  9. Mustoe, S.P., McCrossen, S.D.: A comparison between slit densitometry and video densitometry for quantitation in thin layer chromatography. Chromatogr. 53(1), S474–S477 (2001). http://dx.doi.org/10.1007/BF02490381

    Article  Google Scholar 

  10. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970). http://dx.doi.org/10.1016/0022-2836(70)90057-4

    Article  Google Scholar 

  11. Poole, C.F.: Planar chromatography at the turn of the century. J. Chromatogr. A 856(1–2), 399–427 (1999)

    Article  Google Scholar 

  12. Sousa, A.V., Aguiar, R., Mendonça, A.M., Campilho, A.: Automatic lane and band detection in images of thin layer chromatography. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 158–165. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30126-4_20

    Chapter  Google Scholar 

  13. Sung, W.K.: Algorithms in Bioinformatics: A Practical Introduction. CRC Press, Boca Raton (2009)

    Google Scholar 

  14. Tie-xin, T., Hong, W.: An image analysis system for thin-layer chromatography quantification and its validation. J. Chromatogr. Sci. 46(6), 560–564 (2008). http://dx.doi.org/10.1093/chromsci/46.6.560

    Article  Google Scholar 

  15. Vovk, I., Prošek, M.: Quantitative evaluation of chromatograms from totally illuminated thin-layer chromatographic plates. J. Chromatogr. A 768(2), 329–333 (1997). http://dx.doi.org/10.1016/S0021-9673(96)01070-9

    Article  Google Scholar 

  16. Zhang, L., Lin, X.: Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging. J. Chromatogr. A 1109(2), 273–278 (2006). http://dx.doi.org/10.1016/j.chroma.2006.01.018

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Pia Altenhofer, who provided TLC images, test sets and helpful ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Heinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Heinke, F., Beier, R., Bergmann, T., Mixtacki, H., Labudde, D. (2017). Novel Computational Techniques for Thin-Layer Chromatography (TLC) Profiling and TLC Profile Similarity Scoring. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58274-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58273-3

  • Online ISBN: 978-3-319-58274-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics