Abstract
Thin-layer chromatography (TLC) is an experimental separation technique for multi-compound mixtures widely applied in various fields of industry and research. In contrast to comparable techniques, TLC is straightforward, cost- and time-efficient, and well-applicable in field operations due to its flexibility. In TLC, after applying a mixture sample to the adsorbent layer on the TLC plate, the compounds ascent the plate at different rates due to their individual physicochemical characteristics, whereas separation is eventually achieved.
In this paper, we present novel computational techniques for automated TLC plate photograph profiling and fast TLC profile similarity scoring that allow advanced database accessibility for experimental TLC data. The presented methodology thus provides a toolset for automated comparison of plate profiles with gold standard or baseline profile databases. Impurities or sub-standard deviations can be readily identified. Hence, these techniques can be of great value by supporting the pharmaceutical quality assessment process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In most software tools and programming languages, 256 color levels are implemented.
References
Akbari, A., Albregtsen, F., Jakobsen, K.S.: Automatic lane detection and separation in one dimensional gel images using continuous wavelet transform. Anal. Methods 2(9), 1360 (2010). http://dx.doi.org/10.1039/c0ay00167h
Bernard-Savary, P., Poole, C.F.: Instrument platforms for thin-layer chromatography. J. Chromatogr. A 1421, 184–202 (2015). http://dx.doi.org/10.1016/j.chroma.2015.08.002
Feng, D.F., Doolittle, R.F.: [21] progressive alignment of amino acid sequences and construction of phylogenetic trees from them. Methods Enzymol. 266, 368–382 (1996). Elsevier BV. http://dx.doi.org/10.1016/S0076-6879(96)66023-6
Heinke, F., Schildbach, S., Stockmann, D., Labudde, D.: eProS-a database and toolbox for investigating protein sequence-structure-function relationships through energy profiles. Nucleic Acids Res. 41(D1), D320–D326 (2012). http://dx.doi.org/10.1093/nar/gks1079
Hemmateenejad, B., Mobaraki, N., Shakerizadeh-Shirazi, F., Miri, R.: Multivariate image analysis-thin layer chromatography (MIA-TLC) for simultaneous determination of co-eluting components. Analyst 135(7), 1747 (2010). http://dx.doi.org/10.1039/C0AN00078G
Johnsson, R., Träff, G., Sundén, M., Ellervik, U.: Evaluation of quantitative thin layer chromatography using staining reagents. J. Chromatogr. A 1164(1–2), 298–305 (2007). http://dx.doi.org/10.1016/j.chroma.2007.07.029
Kerr, E., West, C., Hartwell, S.K.: Quantitative TLC-image analysis of urinary creatinine using iodine staining and RGB values. J. Chromatogr. Sci. 54(4), 639–646 (2015). http://dx.doi.org/10.1093/chromsci/bmv183
Moreira, B., Sousa, A., Mendonça, A.M., Campilho, A.: Automatic lane segmentation in TLC images using the continuous wavelet transform. Comput. Math. Methods Med. 2013, 1–19 (2013). http://dx.doi.org/10.1155/2013/218415
Mustoe, S.P., McCrossen, S.D.: A comparison between slit densitometry and video densitometry for quantitation in thin layer chromatography. Chromatogr. 53(1), S474–S477 (2001). http://dx.doi.org/10.1007/BF02490381
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970). http://dx.doi.org/10.1016/0022-2836(70)90057-4
Poole, C.F.: Planar chromatography at the turn of the century. J. Chromatogr. A 856(1–2), 399–427 (1999)
Sousa, A.V., Aguiar, R., Mendonça, A.M., Campilho, A.: Automatic lane and band detection in images of thin layer chromatography. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3212, pp. 158–165. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30126-4_20
Sung, W.K.: Algorithms in Bioinformatics: A Practical Introduction. CRC Press, Boca Raton (2009)
Tie-xin, T., Hong, W.: An image analysis system for thin-layer chromatography quantification and its validation. J. Chromatogr. Sci. 46(6), 560–564 (2008). http://dx.doi.org/10.1093/chromsci/46.6.560
Vovk, I., Prošek, M.: Quantitative evaluation of chromatograms from totally illuminated thin-layer chromatographic plates. J. Chromatogr. A 768(2), 329–333 (1997). http://dx.doi.org/10.1016/S0021-9673(96)01070-9
Zhang, L., Lin, X.: Quantitative evaluation of thin-layer chromatography with image background estimation based on charge-coupled device imaging. J. Chromatogr. A 1109(2), 273–278 (2006). http://dx.doi.org/10.1016/j.chroma.2006.01.018
Acknowledgments
We are very grateful to Pia Altenhofer, who provided TLC images, test sets and helpful ideas.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Heinke, F., Beier, R., Bergmann, T., Mixtacki, H., Labudde, D. (2017). Novel Computational Techniques for Thin-Layer Chromatography (TLC) Profiling and TLC Profile Similarity Scoring. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation. BDAS 2017. Communications in Computer and Information Science, vol 716. Springer, Cham. https://doi.org/10.1007/978-3-319-58274-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-58274-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58273-3
Online ISBN: 978-3-319-58274-0
eBook Packages: Computer ScienceComputer Science (R0)