Nothing Special   »   [go: up one dir, main page]

Skip to main content

Universal Matrix Insertion Grammars with Small Size

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10240))

Abstract

We study matrix insertion grammars (MIS) towards representation of recursively enumerable languages with small size. We show that pure MIS of size (3; 1, 2, 2) (i.e., having ternary matrices inserting one symbol in two symbol context) can characterize all recursively enumerable languages. This is achieved by either applying an inverse morphism and a weak coding, or a left (right) quotient with a regular language or an intersection with a regular language followed by a weak coding. The obtained results complete known results on insertion-deletion systems from DNA computing area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)

    Google Scholar 

  2. Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9_9

    Chapter  Google Scholar 

  4. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of matrix insertion-deletion systems with context-free insertion or deletion. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 35–48. Springer, Cham (2016). doi:10.1007/978-3-319-41312-9_4

    Google Scholar 

  5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS, vol. 31, pp. 88–98 (2010)

    Google Scholar 

  6. Fujioka, K.: Morphic characterizations of languages in Chomsky hierarchy with insertion and locality. Inf. Comput. 209(3), 397–408 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fujioka, K.: Morphic characterizations with insertion systems controlled by a context of length one. Theoret. Comput. Sci. 469, 69–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galiukschov, B.S.: Semicontextual grammars (in Russian). In: Matematika Logica i Matematika Linguistika, pp. 38–50. Kalinin University (1981)

    Google Scholar 

  9. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. Fundamenta Informaticae 138, 127–144 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). doi:10.1007/3-540-60249-6_60

    Chapter  Google Scholar 

  13. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing, formal languages: characterizing recursively enumerable languages using insertion-deletion systems. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III. DIMACS Series in Discrete Mathematics and Theretical Computer Science, vol. 48, pp. 329–338 (1999)

    Google Scholar 

  14. Kari, L., Sosík, P.: On the weight of universal insertion grammars. Theoret. Comput. Sci. 396(1–3), 264–270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krassovitskiy, A.: On the power of insertion P systems of small size. In: Martínez del Amor, M.A., Orejuela-Pinedo, E.F., Păun, G., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. II, pp. 29–43. Fénix Editora, Sevilla (2009)

    Google Scholar 

  17. Kuppusamy, L., Mahendran, A.: Modelling DNA and RNA secondary structures using matrix insertion-deletion systems. Int. J. Appl. Math. Comput. Sci. 26(1), 245–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marcus, M., Păun, G.: Regulated Galiukschov semicontextual grammars. Kybernetika 26(4), 316–326 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74593-8_18

    Chapter  Google Scholar 

  21. Motwani, R., Panigrahy, R., Saraswat, V., Ventkatasubramanian, S.: On the decidability of accessibility problems (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC, pp. 306–315. ACM (2000)

    Google Scholar 

  22. Mutyam, M., Krithivasan, K., Reddy, A.S.: On characterizing recursively enumerable languages by insertion grammars. Fundamenta Informaticae 64(1–4), 317–324 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Onodera, K.: A note on homomorphic representation of recursively enumerable languages with insertion grammars. Trans. Inf. Process. Soc. Japan 44(5), 1424–1427 (2003)

    MathSciNet  Google Scholar 

  24. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456, 80–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characterizations of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, New York (1998)

    Book  MATH  Google Scholar 

  27. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2(4), 321–336 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang. Comb. 12(1–2), 317–328 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Verlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fernau, H., Kuppusamy, L., Verlan, S. (2017). Universal Matrix Insertion Grammars with Small Size. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58187-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58186-6

  • Online ISBN: 978-3-319-58187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics