Abstract
We study matrix insertion grammars (MIS) towards representation of recursively enumerable languages with small size. We show that pure MIS of size (3; 1, 2, 2) (i.e., having ternary matrices inserting one symbol in two symbol context) can characterize all recursively enumerable languages. This is achieved by either applying an inverse morphism and a weak coding, or a left (right) quotient with a regular language or an intersection with a regular language followed by a weak coding. The obtained results complete known results on insertion-deletion systems from DNA computing area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)
Biegler, F., Burrell, M.J., Daley, M.: Regulated RNA rewriting: modelling RNA editing with guided insertion. Theoret. Comput. Sci. 387(2), 103–112 (2007)
Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9_9
Fernau, H., Kuppusamy, L., Raman, I.: Generative power of matrix insertion-deletion systems with context-free insertion or deletion. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 35–48. Springer, Cham (2016). doi:10.1007/978-3-319-41312-9_4
Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS, vol. 31, pp. 88–98 (2010)
Fujioka, K.: Morphic characterizations of languages in Chomsky hierarchy with insertion and locality. Inf. Comput. 209(3), 397–408 (2011)
Fujioka, K.: Morphic characterizations with insertion systems controlled by a context of length one. Theoret. Comput. Sci. 469, 69–76 (2013)
Galiukschov, B.S.: Semicontextual grammars (in Russian). In: Matematika Logica i Matematika Linguistika, pp. 38–50. Kalinin University (1981)
Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)
Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
Ivanov, S., Verlan, S.: Random context and semi-conditional insertion-deletion systems. Fundamenta Informaticae 138, 127–144 (2015)
Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995). doi:10.1007/3-540-60249-6_60
Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing, formal languages: characterizing recursively enumerable languages using insertion-deletion systems. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III. DIMACS Series in Discrete Mathematics and Theretical Computer Science, vol. 48, pp. 329–338 (1999)
Kari, L., Sosík, P.: On the weight of universal insertion grammars. Theoret. Comput. Sci. 396(1–3), 264–270 (2008)
Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)
Krassovitskiy, A.: On the power of insertion P systems of small size. In: Martínez del Amor, M.A., Orejuela-Pinedo, E.F., Păun, G., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.) Seventh Brainstorming Week on Membrane Computing, vol. II, pp. 29–43. Fénix Editora, Sevilla (2009)
Kuppusamy, L., Mahendran, A.: Modelling DNA and RNA secondary structures using matrix insertion-deletion systems. Int. J. Appl. Math. Comput. Sci. 26(1), 245–258 (2016)
Marcus, M., Păun, G.: Regulated Galiukschov semicontextual grammars. Kybernetika 26(4), 316–326 (1990)
Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-deletion systems. Theoret. Comput. Sci. 330(2), 339–348 (2005)
Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74593-8_18
Motwani, R., Panigrahy, R., Saraswat, V., Ventkatasubramanian, S.: On the decidability of accessibility problems (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC, pp. 306–315. ACM (2000)
Mutyam, M., Krithivasan, K., Reddy, A.S.: On characterizing recursively enumerable languages by insertion grammars. Fundamenta Informaticae 64(1–4), 317–324 (2005)
Onodera, K.: A note on homomorphic representation of recursively enumerable languages with insertion grammars. Trans. Inf. Process. Soc. Japan 44(5), 1424–1427 (2003)
Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theoret. Comput. Sci. 456, 80–88 (2012)
Păun, G., Pérez-Jiménez, M.J., Yokomori, T.: Representations and characterizations of languages in Chomsky hierarchy by means of insertion-deletion systems. Int. J. Found. Comput. Sci. 19(4), 859–871 (2008)
Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, New York (1998)
Takahara, A., Yokomori, T.: On the computational power of insertion-deletion systems. Nat. Comput. 2(4), 321–336 (2003)
Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang. Comb. 12(1–2), 317–328 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Fernau, H., Kuppusamy, L., Verlan, S. (2017). Universal Matrix Insertion Grammars with Small Size. In: Patitz, M., Stannett, M. (eds) Unconventional Computation and Natural Computation. UCNC 2017. Lecture Notes in Computer Science(), vol 10240. Springer, Cham. https://doi.org/10.1007/978-3-319-58187-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-58187-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-58186-6
Online ISBN: 978-3-319-58187-3
eBook Packages: Computer ScienceComputer Science (R0)