Nothing Special   »   [go: up one dir, main page]

Skip to main content

NeuroHex: A Deep Q-learning Hex Agent

  • Conference paper
  • First Online:
Computer Games (CGW 2016, GIGA 2016)

Abstract

DeepMind’s recent spectacular success in using deep convolutional neural nets and machine learning to build superhuman level agents—e.g. for Atari games via deep Q-learning and for the game of Go via other deep Reinforcement Learning methods—raises many questions, including to what extent these methods will succeed in other domains. In this paper we consider DQL for the game of Hex: after supervised initializing, we use self-play to train NeuroHex, an 11-layer convolutional neural network that plays Hex on the 13 \(\times \) 13 board. Hex is the classic two-player alternate-turn stone placement game played on a rhombus of hexagonal cells in which the winner is whomever connects their two opposing sides. Despite the large action and state space, our system trains a Q-network capable of strong play with no search. After two weeks of Q-learning, NeuroHex achieves respective win-rates of 20.4% as first player and 2.1% as second player against a 1-s/move version of MoHex, the current ICGA Olympiad Hex champion. Our data suggests further improvement might be possible with more training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anshelevich, V.V.: The game of Hex: an automatic theorem proving approach to game programming. In: AAAI/IAAI, pp. 189–194 (2000)

    Google Scholar 

  2. Arneson, B., Hayward, R., Henderson, P.: Wolve wins Hex tournament. ICGA J. 32, 49–53 (2008)

    Article  Google Scholar 

  3. Arneson, B., Hayward, R.B., Henderson, P.: Monte Carlo tree search in Hex. IEEE Trans. Comput. Intell. AI Games 2(4), 251–258 (2010)

    Article  Google Scholar 

  4. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: NIPS 2012 Deep Learning and Unsupervised Feature Learning Workshop (2012)

    Google Scholar 

  5. Baudiš, P., Gailly, J.: PACHI: state of the art open source go program. In: Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS, vol. 7168, pp. 24–38. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31866-5_3

    Chapter  Google Scholar 

  6. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy) (2010). Oral Presentation

    Google Scholar 

  7. Gardner, M.: Mathematical games. Sci. Am. 197(1), 145–150 (1957)

    Article  Google Scholar 

  8. Hayward, R.B.: MoHex wins Hex tournament. ICGA J. 36(3), 180–183 (2013)

    Article  Google Scholar 

  9. Huang, S.-C., Arneson, B., Hayward, R.B., Müller, M., Pawlewicz, J.: MoHex 2.0: a pattern-based MCTS Hex player. In: Herik, H.J., Iida, H., Plaat, A. (eds.) CG 2013. LNCS, vol. 8427, pp. 60–71. Springer, Cham (2014). doi:10.1007/978-3-319-09165-5_6

    Google Scholar 

  10. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15, 167–191 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shannon, C.E.: Computers and automata. Proc. Inst. Radio Eng. 41, 1234–1241 (1953)

    MathSciNet  Google Scholar 

  13. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Tesauro, G.: Temporal difference learning and TD-gammon. Commun. ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  16. Tieleman, T., Hinton, G.: Lecture 6.5–RmsProp: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Young, K., Vasan, G., Hayward, R. (2017). NeuroHex: A Deep Q-learning Hex Agent. In: Cazenave, T., Winands, M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds) Computer Games. CGW GIGA 2016 2016. Communications in Computer and Information Science, vol 705. Springer, Cham. https://doi.org/10.1007/978-3-319-57969-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57969-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57968-9

  • Online ISBN: 978-3-319-57969-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics