Nothing Special   »   [go: up one dir, main page]

Skip to main content

Almost Optimal Cover-Free Families

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10236))

Included in the following conference series:

Abstract

Roughly speaking, an (n, (rs))-Cover Free Family (CFF) is a small set of n-bit strings such that: “in any \(d:=r+s\) indices we see all patterns of weight r”. CFFs have been of interest for a long time both in discrete mathematics as part of block design theory, and in theoretical computer science where they have found a variety of applications, for example, in parametrized algorithms where they were introduced in the recent breakthrough work of Fomin, Lokshtanov and Saurabh [16] under the name ‘lopsided universal sets’.

In this paper we give the first explicit construction of cover-free families of optimal size up to lower order multiplicative terms, for any r and s. In fact, our construction time is almost linear in the size of the family. Before our work, such a result existed only for \(r=d^{o(1)}\), and \(r= \omega (d/(\log \log d\log \log \log d))\).

As a sample application, we improve the running times of parameterized algorithms from the recent work of Gabizon, Lokshtanov and Pilipczuk [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The hypergraph is Sperner hypergraph if no edge is a subset of another. If it is not Sperner hypergraph then learning is not possible.

References

  1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)

    MathSciNet  Google Scholar 

  2. Abasi, H., Bshouty, N.H., Gabizon, A., Haramaty, E.: On r-simple k-path. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 1–12. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_1

    Google Scholar 

  3. Abasi, H., Bshouty, N.H., Mazzawi, H.: Non-adaptive learning of a hidden hypergraph. In: Chaudhuri, K., Gentile, C., Zilles, S. (eds.) ALT 2015. LNCS (LNAI), vol. 9355, pp. 89–101. Springer, Cham (2015). doi:10.1007/978-3-319-24486-0_6

    Chapter  Google Scholar 

  4. Angluin, D., Chen, J.: Learning a hidden graph using \(O(\log n)\) queries per edge. J. Comput. Syst. Sci. 74(4), 546–556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alon, N., Yuster, R., Zwick, U.: Color coding. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms. Springer, Heidelberg (2008)

    Google Scholar 

  6. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bshouty, N.H.: Testers and their applications. In: ITCS 2014, pp. 327–352 (2014). Full version: Electronic Colloquium on Computational Complexity (ECCC), vol. 19, p. 11 (2012)

    Google Scholar 

  8. Bshouty, N.H.: Linear time constructions of some \(d\)-restriction problems. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 74–88. Springer, Cham (2015). doi:10.1007/978-3-319-18173-8_5

    Chapter  Google Scholar 

  9. Chin, F.Y.L., Leung, H.C.M., Yiu, S.-M.: Non-adaptive complex group testing with multiple positive sets. Theor. Comput. Sci. 505, 11–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, D.Z., Hwang, F.K.: Combinatorial group testing and its applications. Applied Mathematics, vol. 12, 2nd edn. World Scientific, New York (2000)

    MATH  Google Scholar 

  11. Du, D.Z., Hwang, F.: Pooling Design and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  12. Dýachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Pereda. Inf. 18(3), 7–13 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Dýachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform 18(4), 237–250 (1989)

    MathSciNet  MATH  Google Scholar 

  14. D’yachkov, A.G., Vorob’ev, I.V., Polyansky, N.A., Shchukin, VYu.: Bounds on the rate of disjunctive codes. Probl. Inf. Transm. 50(1), 27–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Füredi, Z.: On \(r\)-cover-free families. J. Comb. Theory Ser. A 73(1), 172–173 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA 2014, pp. 142–151 (2014)

    Google Scholar 

  17. Gao, H., Hwang, F.K., Thai, M.T., Wu, W., Znati, T.: Construction of d(H)-disjunct matrix for group testing in hypergraphs. J. Comb. Optim. 12(3), 297–301 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gabizon, A., Lokshtanov, D., Pilipczuk, M.: Fast algorithms for parameterized problems with relaxed disjointness constraints. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 545–556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48350-3_46

    Chapter  Google Scholar 

  19. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1126–1142 (2010)

    Google Scholar 

  20. Kautz, W.H., Singleton, R.C.: Nonrandom binary superimposed codes. IEEE Trans. Inform. Theory 10(4), 363–377 (1964)

    Article  MATH  Google Scholar 

  21. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70575-8_47

    Chapter  Google Scholar 

  22. Linial, N., Luby, M., Saks, M.E., Zuckerman, D.: Efficient construction of a small hitting set for combinatorial rectangles in high dimension. Combinatorica 17(2), 215–234 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, L., Shen, H.: Explicit constructions of separating hash families from algebraic curves over finite fields. Des. Codes Cryptogr. 41(2), 221–233 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Macula, A.J., Popyack, L.J.: A group testing method for finding patterns in data. Discret. Appl. Math. 144, 149–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Macula, A.J., Rykov, V.V., Yekhanin, S.: Trivial two-stage group testing for complexes using almost disjunct matrices. Discret. Appl. Math. 137(1), 97–107 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ngo, H.Q., Du, D.Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. Theor. Comput. Sci. 55, 171–182 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS 1995, pp. 182–191 (1995)

    Google Scholar 

  29. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

    Article  MathSciNet  Google Scholar 

  30. Stinson, D.R., Van Trung, T., Wei, R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Stat. Plan. Inference 86, 595–617 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stinson, D.R., Wei, R., Zhu, L.: New constructions for perfect hash families and related structures using combintorial designs and codes. J. Combin. Des. 8(3), 189–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stinson, D.R., Wei, R., Zhu, L.: Some new bounds for cover-free families. J. Comb. Theory Ser. A 90(1), 224–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Torney, D.C.: Sets pooling designs. Ann. Comb. 3, 95–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader H. Bshouty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bshouty, N.H., Gabizon, A. (2017). Almost Optimal Cover-Free Families. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57586-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57585-8

  • Online ISBN: 978-3-319-57586-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics