Nothing Special   »   [go: up one dir, main page]

Skip to main content

Knowledge Discovery in Graphs Through Vertex Separation

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10233))

Included in the following conference series:

  • 1853 Accesses

Abstract

This paper presents our ongoing work on the Vertex Separator Problem (VSP), and its application to knowledge discovery in graphs representing real data. The classic VSP is modeled as an integer linear program. We propose several variants to adapt this model to graphs with various properties. To evaluate the relevance of our approach on real data, we created two graphs of different size from the IMDb database. The model was applied to the separation of these graphs. The results demonstrate how the model is able to semantically separate graphs into clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Information courtesy of IMDb (http://www.imdb.com). Used with permission.

References

  1. Balas, E., de Souza, C.: The vertex separator problem: a polyhedral investigation. Math. Program. 103(3), 583–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benlic, U., Hao, J.K.: Breakout local search for the vertex separator problem. In: IJCAI (2013)

    Google Scholar 

  3. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, T.A.: Direct Methods for Sparse Linear Systems, vol. 2. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  5. Didi Biha, M., Meurs, M.J.: An exact algorithm for solving the vertex separator problem. J. Glob. Optim. 49(3), 425–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fu, B., Oprisan, S.A., Xu, L.: Multi-directional width-bounded geometric separator and protein folding. Int. J. Comput. Geom. Appl. 18(05), 389–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukuyama, J.: NP-completeness of the planar separator problems. J. Graph Algorithms Appl. 10(2), 317–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman, New York (2002)

    Google Scholar 

  9. Hager, W.W., Hungerford, J.T.: Continuous quadratic programming formulations of optimization problems on graphs. Eur. J. Oper. Res. 240(2), 328–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanevsky, A.: Finding all minimum size separating vertex sets in a graph. Coordinated Science Laboratory Report no. ACT-93 (UJLU-ENG 88–2233) (1988)

    Google Scholar 

  11. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  13. Schuchard, M., Geddes, J., Thompson, C., Hopper, N.: Routing around decoys. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 85–96. ACM (2012)

    Google Scholar 

  14. de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Program. 103(3), 609–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Jean Meurs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sarfati, M., Queudot, M., Mancel, C., Meurs, MJ. (2017). Knowledge Discovery in Graphs Through Vertex Separation. In: Mouhoub, M., Langlais, P. (eds) Advances in Artificial Intelligence. Canadian AI 2017. Lecture Notes in Computer Science(), vol 10233. Springer, Cham. https://doi.org/10.1007/978-3-319-57351-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57351-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57350-2

  • Online ISBN: 978-3-319-57351-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics