Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling

  • Conference paper
  • First Online:
Progress in Cryptology - AFRICACRYPT 2017 (AFRICACRYPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10239))

Included in the following conference series:

Abstract

While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation.

Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\).

This work was supported by the European Commission under the ICT programme with contract H2020-ICT-2014-1 644209 HEAT, and through the European Research Council under the FP7/2007-2013 programme with ERC Grant Agreement 615722 MOTMELSUM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, A., Hassan, M., Abdullah, M., Rahman, H., Hussin, F., Abdullah, H., Saidur, R.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energ. Rev. 33, 102–109 (2014)

    Article  Google Scholar 

  2. Albrecht, M.: Complexity estimates for solving LWE (2000–2004). https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py

  3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0_4

    Chapter  Google Scholar 

  5. Commission for Energy Regulation: Electricity smart metering customer behaviour trials (CBT) findings report. Technical Report CER11080a (2011). http://www.cer.ie/docs/000340/cer11080(a)(i).pdf

  6. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE schemes. In: SAC 2016. LNCS. Springer (2016)

    Google Scholar 

  7. CryptoExperts: FV-NFLlib (2016). https://github.com/CryptoExperts/FV-NFLlib

  8. CryptoExperts, INP ENSEEIHT, and Quarkslab: NFLlib (2016). https://github.com/quarkslab/NFLlib

  9. Department of Energy & Climate Change: Smart metering implementation programme. Technical Report Third Annual Report on the Roll-out of Smart Meters (2014). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384190/smip_smart_metering_annual_report_2014.pdf

  10. Department of Energy, Climate Change: Smart metering implementation programme - data access, privacy. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/43043/4933-data-access-privacy-con-doc-smart-meter.pdf

  11. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for using homomorphic encryption for bioinformatics. Technical report, Technical report MSR-TR-2015-87, Microsoft Research (2015)

    Google Scholar 

  12. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) International Conference on Machine Learning, vol. 48, pp. 201–210. JMLR.org (2016)

    Google Scholar 

  13. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31284-7_33

    Chapter  Google Scholar 

  14. European Commission: Commission recommendation of 9 on preparations for the roll-out of smart metering systems. Official Journal of the European Union (2012). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012H0148

  15. European Commission: Benchmarking smart metering deployment in the EU-27 with a focus on electricity. Technical Report 365, June 2014. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0356&from=EN

  16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive 2012, 144 (2012)

    Google Scholar 

  17. Koo, B.G., Lee, S.W., Kim, W., Park, J.H.: Comparative study of short-term electric load forecasting. In: Conference on Intelligent Systems, Modelling and Simulation, pp. 463–467, January 2014

    Google Scholar 

  18. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22444-7_15

    Chapter  Google Scholar 

  19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  20. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)

    Article  Google Scholar 

  21. Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J., Lloret, J., Massana, J.: A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tutorials 16(3), 1460–1495 (2014)

    Article  Google Scholar 

  22. Ivakhnenko, A.: Heuristic self-organization in problems of engineering cybernetics. Automatica 6(2), 207–219 (1970)

    Article  Google Scholar 

  23. Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids - a survey of options. Technical Report MSR-TR-2012-119, November 2012. http://research.microsoft.com/apps/pubs/default.aspx?id=178055

  24. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22263-4_10

    Chapter  Google Scholar 

  25. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: Smart Grid Communication, pp. 327–332. IEEE (2010)

    Google Scholar 

  26. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of training neural networks. In: Advances in Neural Information Processing Systems, pp. 855–863 (2014)

    Google Scholar 

  27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 35 (2013). Article 43

    Article  MathSciNet  MATH  Google Scholar 

  29. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). doi:10.1007/978-3-319-29485-8_20

    Chapter  Google Scholar 

  30. Molina-Markham, A., Shenoy, P.J., Fu, K., Cecchet, E., Irwin, D.E.: Private memoirs of a smart meter. In: Ruzzelli, A.G. (ed.) Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 61–66. ACM (2010)

    Google Scholar 

  31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

    Google Scholar 

  32. Recommendation to the European Commission: Essential regulatory requirements and recommendations for data handling, data safety, and consumer protection. Technical Report version 1.0 (2011). https://ec.europa.eu/energy/sites/ener/files/documents/Recommendations

  33. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Workshop on Privacy in the Electronic Society, WPES 2011, pp. 49–60. ACM (2011)

    Google Scholar 

  34. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  35. Smart Grid Coordination Group: Smart grid information security, November 2012. http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group.1_security.pdf

  36. Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomputing 72(1), 625–629 (2008)

    Article  Google Scholar 

  37. The Smart Grid Interoperability Panel - Smart Grid Cybersecurity Committee: Guidelines for smart grid cybersecurity: volume 1 - smart grid cybersecurity strategy, architecture, and high-level requirements. Technical Report NISTIR 7628 Rev 1 (2014). http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf

  38. Veit, A., Goebel, C., Tidke, R., Doblander, C., Jacobsen, H.-A.: Household electricity demand forecasting: benchmarking state-of-the-art methods. In: Conference on future energy systems, pp. 233–234. ACM (2014)

    Google Scholar 

  39. Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K.E., Naehrig, M.: Crypto-nets: neural networks over encrypted data. CoRR, abs/1412.6181 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wouter Castryck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F. (2017). Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling. In: Joye, M., Nitaj, A. (eds) Progress in Cryptology - AFRICACRYPT 2017. AFRICACRYPT 2017. Lecture Notes in Computer Science(), vol 10239. Springer, Cham. https://doi.org/10.1007/978-3-319-57339-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57339-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57338-0

  • Online ISBN: 978-3-319-57339-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics