Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reliable Data Collection for Wireless Sensor Networks Using Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10232))

Included in the following conference series:

Abstract

Data gathering is a subject of interest in Wireless Sensor Networks (WSNs). Because these networks use devices with limited resources, to obtain good results, they must be well configured and distributed, while data must be gathered in an efficient manner, without wasting resources. In this paper, the factors used as a trade-off for a reliable transmission are: complexity and latency. In order to obtain reliability, it is mandatory to make more frame exchanges and to employ extra communication between entities, to ensure that data is not corrupted or lost during transmission. The objective of this paper is centered around reliable communication in WSNs and the proposed solution minimizes the risk of losing data when nodes remain without energy. Among energy aspects, a prioritization algorithm that uses the positions of sensors and the trajectory of a collecting unmanned aerial vehicle (UAV) is implemented in this proposition. All these together form a protocol that is intended to be used in critical systems where every bit of information is vital.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Everything for Cities - Connecting People, Process, Data, and Things To Improve the ‘Livability’ of Cities and Communities. CISCO (2013)

    Google Scholar 

  2. Jankowski, S., Covello, J., Bellini, H., Ritchie, J., Costa, D.: The internet of things: Making sense of the next mega-trend. Goldman Sachs (2014)

    Google Scholar 

  3. Cerulli, R., Gentili, M., Raiconi, A.: Maximizing lifetime and handling reliability in wireless sensor networks. Netw. Int. J. 64(4), 321–338 (2014)

    MathSciNet  Google Scholar 

  4. Bhuyan, B., Sarma, N.: A QoS aware routing protocol in wireless sensor networks with mobile base stations. In: Proceedings of the International Conference on Internet of things and Cloud Computing, Article no 15, March 2016

    Google Scholar 

  5. Mianxiong, D., Kaoru, O., Man, L., Zunyi, T., Suguo, D., Haojin, Z.: UAV-assisted data gathering in wireless sensor networks. J. Supercomputing 70(3), 1142–1155 (2014)

    Article  Google Scholar 

  6. Burri, N., von Rickenbach, P., Wattenhofer, R.: Dozer: Ultra-low power data gathering in sensor networks. In: Information Processing in Sensor Networks, pp. 450–459 (2007)

    Google Scholar 

  7. Zytoune, O., Aboutajdine, D.: A lifetime extension protocol for data gathering in wireless sensor networks. Int. J. Innov. Appl. Stud. 4(3), 477–482 (2013)

    Google Scholar 

  8. Arumugam, G.S., Ponnuchamy, T.: EE-LEACH: Development of energy-efficient LEACH Protocol for data gathering in WSN. EURASIP J. Wirel. Commun. Networking 76, 1–9 (2015)

    Google Scholar 

  9. Fu, C., Jiang, Z., Wei, W., Wei, A.: An energy balanced algorithm of LEACH protocol in WSN. IJCSI Int. J. Comput. Sci. Issues 10(1), 354–359 (2013)

    Google Scholar 

  10. Nehra, V., Sharma, A.K.: PEGASIS-E: Power efficient gathering in sensor information system extended. Glob. J. Comput. Sci. Technol. Netw. Web Secur. 13(15), 1–5 (2013). Version 1.0

    Google Scholar 

  11. Tumer, A.E., Gunduz, M.: Energy-efficient and fast data gathering protocols for indoor wireless sensor networks. Sens. J. 10(9), 8054–8069 (2010). Multidisciplinary Digital Publishing Institute (MDPI)

    Article  Google Scholar 

  12. Lachowski, R., Pellenz, M.E., Penna, M.C., Jamhour, E., Souza, R.D.: An efficient distributed algorithm for constructing spanning trees in wireless sensor networks. Sens. J. 15(1), 1518–1536 (2015). Multidisciplinary Digital Publishing Institute (MDPI)

    Article  Google Scholar 

  13. Walden, D.: The Bellman-Ford Algorithm and Distributed Bellman-Ford (2008)

    Google Scholar 

  14. Sayyed, A., de Araújo, G.M., Bodanese, J.P., Becker, L.B.: Dual-stack single-radio communication architecture for UAV acting as a mobile node to collect data in WSNs. Sens. J. 15(9), 23376–23401 (2015). Multidisciplinary Digital Publishing Institute (MDPI)

    Article  Google Scholar 

  15. Olsson, J.: 6LoWPAN demystified. Texas Instruments, October 2014

    Google Scholar 

  16. Kumar, R., Mundra, P.S.: Improved data gathering protocol for WSN. Int. J. Electron. Comput. Sci. Eng. 1(3), 1208–1213 (2012)

    Google Scholar 

  17. Yueyang, L., Hong, J., Guangxin, Y.: An energy-efficient PEGASIS-based enhanced algorithm in WSN. China Communications, Beijing, China, August, pp. 91–97 (2006)

    Google Scholar 

  18. Tabassum, N., Mamun, Q., Urano, Y.: COSEN: A chain oriented sensor network for efficient data collection. In: Third International Conference on Information Technology: New Generations (ITNG 2006) (2006)

    Google Scholar 

  19. Banerjee, T., Xie, B., Jun, J.H., Agrawal, D.P.: Increasing lifetime of wireless sensor networks using controllable mobile cluster heads. Wirel. Commun. Mobile Comput. 10(3), 313–336 (2010)

    Google Scholar 

  20. Ho, D.T., Shimamoto, S.: Highly reliable communication protocol for WSN-UAV system employing TDMA and PFS scheme. In: GLOBECOM Workshops (GC Wkshps) (2011)

    Google Scholar 

  21. Sotheara, S., Aomi, N., Ando, T., Jiang, L., Shiratori, N., Shimamoto, S.: Effective data gathering protocol in WSN-UAV employing priority-based contention window adjustment scheme. In: Proceedings of the Globecom Workshops, pp. 1475–1480, December 2014

    Google Scholar 

  22. Vladuta, A.V., Pura, M.L., Bica, I.: MAC protocol for data gathering in wireless sensor networks with the aid of unmanned aerial vehicles. Adv. Electr. Comput. Eng. 16(2), 51–56 (2016)

    Article  Google Scholar 

  23. Carrabs, F., Cerrone, C., Cerulli, R., Gaudioso, M.: A novel discretization scheme for the close enough traveling salesman problem. Comput. Oper. Res. 78(C), 163–171 (2017)

    Article  MathSciNet  Google Scholar 

  24. The Network Simulator – ns 2. http://nsnam.sourceforge.net/wiki/index.php/Main_Page

  25. Castiglione, A., Palmieri, F., Fiore, U., Castiglione, A., De Santis, A.: Modeling energy-efficient secure communications in multi-mode wireless mobile devices. J. Comput. Syst. Sci. 81(8), 1464–1478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ricciardi, S., Palmieri, F., Fiore, U., Castiglione, A., Santos-Boada, G.: Modeling energy consumption in next-generation wireless access-over-WDM networks with hybrid power sources. Math. Comput. Model. 58(5–6), 1389–1404 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The research presented in this paper is supported by the project: DataWay - Real-time Data Processing Platform for Smart Cities: Making sense of Big Data - PN-II-RU-TE-2014-4-2731. We would like to thank the reviewers for their time and expertise, constructive comments and valuable insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Pop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vlăduță, AV., Bica, I., Patriciu, VV., Pop, F. (2017). Reliable Data Collection for Wireless Sensor Networks Using Unmanned Aerial Vehicles. In: Au, M., Castiglione, A., Choo, KK., Palmieri, F., Li, KC. (eds) Green, Pervasive, and Cloud Computing. GPC 2017. Lecture Notes in Computer Science(), vol 10232. Springer, Cham. https://doi.org/10.1007/978-3-319-57186-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57186-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57185-0

  • Online ISBN: 978-3-319-57186-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics