Abstract
Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.
A reduced version of this appeared appeared as: M. Asadi-Aghbolaghi et al. A survey on deep learning based approaches for action and gesture recognition in image sequences. In: Proceedings of 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), 2017.
Editors: Sergio Escalera, Isabelle Guyon, Vassilis Athitsos
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: large-scale machine learning on heterogeneous systems, 2015a, http://tensorflow.org/
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: large-scale machine learning on heterogeneous systems, 2015b, http://www.tensorflow.org
S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, S. Vijayanarasimhan, Youtube-8m: a large-scale video classification benchmark. CoRR, abs/1609.08675 (2016)
E. Ahmed, M. Jones, T.K. Marks, An improved deep learning architecture for person re-identification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3908–3916
R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al., Theano: a python framework for fast computation of mathematical expressions, 2016, arXiv:1605.02688
M.R. Amer, S. Todorovic, A. Fern, S.-C. Zhu, Monte carlo tree search for scheduling activity recognition, in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1353–1360
R. Araujo, M.S. Kamel, A semi-supervised temporal clustering method for facial emotion analysis, in 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), IEEE, 2014, pp. 1–6
K. Avgerinakis, K. Adam, A. Briassouli, Y. Kompatsiaris, Moving camera human activity localization and recognition with motionplanes and multiple homographies, in ICIP, IEEE, 2015, pp. 2085–2089
M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, A. Baskurt, Action classification in soccer videos with long short-term memory recurrent neural networks, in International Conference on Artificial Neural Networks (Springer, Berlin, 2010), pp. 154–159
M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, A. Baskurt, Sequential deep learning for human action recognition, in International Workshop on Human Behavior Understanding (Springer, New York, 2011), pp. 29–39
N. Ballas, L. Yao, A. Courville, Delving deeper into convolutional networks for learning video representations, in Proceedings of International Conference on Learning Representations, 2016
I. Bayer, T. Silbermann. A multi modal approach to gesture recognition from audio and video data, in ICMI (2013), pp. 461–466. ISBN 978-1-4503-2129-7. doi:10.1145/2522848.2532592
Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. TNN 5(2), 157–166 (1994)
H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, S. Gould, Dynamic image networks for action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3034–3042
N.C. Camgoz, S. Hadfield, O. Koller, R. Bowden, Using convolutional 3d neural networks for user-independent continuous gesture recognition, in Proceedings IEEE International Conference of Pattern Recognition (International Conference on Pattern Recognition), ChaLearn Workshop, 2016
X. Chai, Z. Liu, F. Yin, Z. Liu, X. Chen, Two streams recurrent neural networks for large-scale continuous gesture recognition, in Proceedings of International Conference on Pattern RecognitionW, 2016
R. Chaudhry, F. Ofli, G. Kurillo, R. Bajcsy, R. Vidal, Bio-inspired dynamic 3d discriminative skeletal features for human action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 471–478
R. Chavarriaga, H. Sagha, J. del R. Milln, Ensemble creation and reconfiguration for activity recognition: an information theoretic approach, in SMC, 2011, pp. 2761–2766. ISBN 978-1-4577-0652-3, http://dblp.uni-trier.de/db/conf/smc/smc2011.html#ChavarriagaSM11
C. Chen, B. Zhang, Z. Hou, J. Jiang, M. Liu, Y. Yang, Action recognition from depth sequences using weighted fusion of 2d and 3d auto-correlation of gradients features, in Multimedia Tools and Applications, 2016, pp. 1–19
W. Chen, J.J. Corso, Action detection by implicit intentional motion clustering, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3298–3306
G. Chéron, I. Laptev, C. Schmid, P-cnn: pose-based cnn features for action recognition, in Proceedings of the IEEE International Conference on Computer Vision, pp. 3218–3226, 2015
R. Collobert, S. Bengio, J. Marithoz, Torch: a modular machine learning software library (Technical Report, IDIAP, 2002)
Z. Deng, M. Zhai, L. Chen, Y. Liu, S. Muralidharan, M.J. Roshtkhari, G. Mori, Deep structured models for group activity recognition, in Proceedings of the British Machine Vision Conference (BMVC) ed. by M.W.J. Xianghua Xie, G.K.L. Tam (BMVA Press, Guildford, 2015), pp. 179.1–179.12. ISBN 1-901725-53-7. doi:10.5244/C.29.179
Z. Deng, A. Vahdat, H. Hu, G. Mori, Structure inference machines: recurrent neural networks for analyzing relations in group activity recognition, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
A. Diba, A. Mohammad Pazandeh, H. Pirsiavash, L. Van Gool, Deepcamp: deep convolutional action and attribute mid-level patterns, in IEEE CVPR, 2016
Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton based action recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015, pp. 1110–1118. doi:10.1109/CVPR.2015.7298714
J. Duan, S. Zhou, J. Wan, X. Guo, S.Z. Li, Multi-modality fusion based on consensus-voting and 3d convolution for isolated gesture recognition, 2016, arXiv:1611.06689
I.C. Duta, B. Ionescu, K. Aizawa, N. Sebe, Spatio-temporal vlad encoding for human action recognition in videos, in International Conference on Multimedia Modeling (Springer, New York, 2017), pp. 365–378
T. Eleni, Gesture recognition with a convolutional long short term memory recurrent neural network, in ESANN, 2015, https://books.google.cl/books?id=E8qMjwEACAAJ
J.L. Elman, Finding structure in time. Cognitive Sci. 14(2), 179–211 (1990)
H.J. Escalante, C.A. Hérnadez, L.E. Sucar, M. Montes. Late fusion of heterogeneous methods for multimedia image retrieval, in Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, MIR’08 (ACM, New York, 2008), pp. 172–179. ISBN 978-1-60558-312-9. doi:10.1145/1460096.1460125
H.J. Escalante, I. Guyon, V. Athitsos, P. Jangyodsuk, J. Wan, Principal motion components for gesture recognition using a single example, in PAA, 2015
H.J. Escalante, E.F. Morales, L.E. Sucar, A naïve bayes baseline for early gesture recognition. PRL 73, 91–99 (2016a)
H.J. Escalante, V. Ponce, J. Wan, M. Riegler, A. Clapes, S. Escalera, I. Guyon, X. Baro, P. Halvorsen, H. Müller, M. Larson, Chalearn joint contest on multimedia challenges beyond visual analysis: an overview, in Proceedings of International Conference on Pattern Recognition, 2016b
V. Escorcia, F.C. Heilbron, J.C. Niebles, B. Ghanem, DAPs: deep action proposals for action understanding, in European Conference on Computer Vision, 2016
C. Feichtenhofer, A. Pinz, R. Wildes, Spatiotemporal residual networks for video action recognition, in Advances in Neural Information Processing Systems, 2016a, pp. 3468–3476
C. Feichtenhofer, A. Pinz, A. Zisserman, Convolutional two-stream network fusion for video action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016b, pp. 1933–1941
B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, T. Tuytelaars, Rank pooling for action recognition, in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016
D. Fortun, P. Bouthemy, C. Kervrann, Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)
F.A. Gers, N.N. Schraudolph, J. Schmidhuber, Learning precise timing with lstm recurrent networks. JMLR 3, 115–143 (2002)
G. Gkioxari, J. Malik, Finding action tubes, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 759–768
A. Grushin, D.D. Monner, J.A. Reggia, A. Mishra, Robust human action recognition via long short-term memory, in The 2013 International Joint Conference on, Neural Networks (IJCNN), IEEE, 2013, pp. 1–8
F. Gu, M. Sridhar, A. Cohn, D. Hogg, F. Flrez-Revuelta, D. Monekosso, P. Remagnino, Weakly supervised activity analysis with spatio-temporal localisation, Neurocomputing, 2016. ISSN 0925-2312. doi:10.1016/j.neucom.2016.08.032, http://www.sciencedirect.com/science/article/
S. Han, H. Mao, W. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding, in Proceedings of International Conference on Learning Representations, 2016
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016a, pp. 770–778
Y. He, S. Shirakabe, Y. Satoh, H. Kataoka, Human action recognition without human, in Proceedings of European Conference on Computer Vision 2016 Workshops (Springer, New York, 2016b), pp. 11–17
F.C. Heilbron, V. Escorcia, B. Ghanem, J.C. Niebles, Activitynet: a large-e video benchmark for human activity understanding, in CVPR, 2015, pp. 961–970
S. Hochreiter, Untersuchungen zu dynamischen neuronalen netzen (Technische Universität München, Diploma, 1991), p. 91
S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
J. Huang, W. Zhou, H. Li, W. Li, Sign language recognition using 3d convolutional neural networks, in ICME, 2015, pp. 1–6
M.S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, G. Mori, A hierarchical deep temporal model for group activity recognition, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
A. Jain, J. Tompson, M. Andriluka, G.W. Taylor, C. Bregler, Learning human pose estimation features with convolutional networks, in International Conference on Learning Representations, Cornell University, 2014a, pp. 1–14
A. Jain, J. Tompson, Y. LeCun, C. Bregler, MoDeep: a deep learning framework using motion features for human pose estimation, vol. 9004, 2015a, pp. 302–315
M. Jain, J. van Gemert, C.G.M. Snoek, University of Amsterdam at thumos challenge, in ECCV THUMOS Challenge 2014 (Zürich, Switzerland, September, 2014), 2014b
M. Jain, J.C. van Gemert, T. Mensink, C.G.M. Snoek. Objects2action: classifying and localizing actions without any video example, in IEEE ICCV, 2015b, arXiv.org/abs/1510.06939
M. Jain, J.C. van Gemert, C.G. Snoek, What do 15,000 object categories tell us about classifying and localizing actions? in CVPR, 2015c, pp. 46–55
S. Ji, W. Xu, M. Yang, K. Yu. 3d convolutional neural networks for human action recognition, in Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 495–502
S. Ji, W. Xu, M. Yang, K. Yu. 3d convolutional neural networks for human action recognition. IEEE TPAMI, vol. 35(1), 2013, pp. 221–231. ISSN 0162-8828. doi:10.1109/TPAMI.2012.59
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in ACM MM (ACM, New York, 2014), pp. 675–678
Y.-G. Jiang, J. Liu, A. Roshan Zamir, I. Laptev, M. Piccardi, M. Shah, R. Sukthankar, THUMOS challenge: action recognition with a large number of classes. ICCV13-Action-Workshop, 2013
V. John, A. Boyali, S. Mita, M. Imanishi, N. Sanma. Deep learning-based fast hand gesture recognition using representative frames, in 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), IEEE, 2016, pp. 1–8
J. Joo, W. Li, F.F. Steen, S.-C. Zhu. Visual persuasion: Inferring communicative intents of images, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 216–223
B. Kang, S. Tripathi, T.Q. Nguyen, Real-time sign language fingerspelling recognition using convolutional neural networks from depth map, in ACPR, 2015, arXiv:abs/1509.03001
S. Karaman, L. Seidenari, A.D. Bagdanov, A.D. Bimbo, L1-regularized logistic regression stacking and transductive crf smoothing for action recognition in video, in Results of the THUMOS 2013 Action Recognition Challenge with a Large Number of Classes, 2013
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732
T. Kerola, N. Inoue, K. Shinoda, Cross-view human action recognition from depth maps using spectral graph sequences. Comput. Vis. Image Underst. 154, 108–126 (2017)
O. Koller, H. Ney, R. Bowden, Deep hand: how to train a cnn on 1 million hand images when your data is continuous and weakly labelled, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3793–3802
J. Konecny, M. Hagara, One-shot-learning gesture recognition using hog-hof features, in JMLR, vol. 15, 2014, pp. 2513–2532, http://jmlr.org/papers/v15/konecny14a.html
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105
Y. Kuniyoshi, H. Inoue, M. Inaba, Design and implementation of a system that generates assembly programs from visual recognition of human action sequences, in IEEE International Workshop on Intelligent Robots and Systems’ 90.’Towards a New Frontier of Applications’, Proceedings, IROS’90, IEEE, 1990, pp. 567–574
G. Lev, G. Sadeh, B. Klein, L. Wolf, Rnn fisher vectors for action recognition and image annotation, in European Conference on Computer Vision (Springer, New York, 2016), pp. 833–850
S. Li, Z.-Q. Liu, A.B. Chan, Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network. IJCV, vol. 113(1), May 2015a, pp. 19–36. ISSN 0920-5691. doi:10.1007/s11263-014-0767-8
S. Li, W. Zhang, A.B. Chan, Maximum-margin structured learning with deep networks for 3d human pose estimation, in ICCV, 2015b, pp. 2848–2856
Y. Li, W. Li, V. Mahadevan, N. Vasconcelos, Vlad3: encoding dynamics of deep features for action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016a, pp. 1951–1960
Y. Li, Q. Miao, K. Tian, Y. Fan, X. Xu, R. Li, J. Song, Large-scale gesture recognition with a fusion of rgb-d data based on c3d model, in Proceedings of International Conference on Pattern RecognitionW, 2016b
C. Liang, Y. Song, Y. Zhang, Hand gesture recognition using view projection from point cloud, in 2016 IEEE International Conference on Image Processing (ICIP), IEEE, 2016, pp. 4413–4417
Z. Liang, G. Zhang, J.X. Huang, Q.V. Hu, Deep learning for healthcare decision making with emrs, in 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2014, pp. 556–559
H.-I. Lin, M.-H. Hsu, W.-K. Chen, Human hand gesture recognition using a convolution neural network, in CASE, 2015, pp. 1038–1043
A.-A. Liu, Y.-T. Su, W.-Z. Nie, M. Kankanhalli, Hierarchical clustering multi-task learning for joint human action grouping and recognition. TPAMI 39(1), 102–114 (2017)
J. Liu, A. Shahroudy, D. Xu, G. Wang, Spatio-temporal lstm with trust gates for 3d human action recognition, in European Conference on Computer Vision (Springer, New York, 2016a), pp. 816–833
Z. Liu, C. Zhang, Y. Tian, 3d-based deep convolutional neural network for action recognition with depth sequences. Image Vis. Comput. 55, 93–100 (2016b)
J. Luo, W. Wang, H. Qi, Group sparsity and geometry constrained dictionary learning for action recognition from depth maps, in Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 1809–1816
B. Mahasseni, S. Todorovic, Regularizing long short term memory with 3d human-skeleton sequences for action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3054–3062
E. Mansimov, N. Srivastava, R. Salakhutdinov, Initialization strategies of spatio-temporal convolutional neural networks, 2015, arXiv:1503.07274
R. Marks, System and method for providing a real-time three-dimensional interactive environment, Dec. 6 2011. US Patent 8,072,470
P. Mettes, J.C. van Gemert, C.G. Snoek, Spot on: action localization from pointly-supervised proposals, in European Conference on Computer Vision (Springer, New York, 2016), pp. 437–453
V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski et al., Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
P. Molchanov, S. Gupta, K. Kim, J. Kautz, Hand gesture recognition with 3d convolutional neural networks, in CVPRW, June 2015, pp. 1–7. doi:10.1109/CVPRW.2015.7301342
P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, J. Kautz, Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network, in CVPR, 2016
A. Montes, A. Salvador, X. Giro-i Nieto, Temporal activity detection in untrimmed videos with recurrent neural networks, 2016, arXiv:1608.08128
H. Mousavi Hondori, M. Khademi, A review on technical and clinical impact of microsoft kinect on physical therapy and rehabilitation. J. Med. Eng. (2014). doi:10.1155/2014/846514
K. Nasrollahi, S. Escalera, P. Rasti, G. Anbarjafari, X. Bar, H.J. Escalante, T.B. Moeslund, Deep learning based super-resolution for improved action recognition, in IPTA, 2015, pp. 67–72. ISBN 978-1-4799-8637-8, http://dblp.uni-trier.de/db/conf/ipta/ipta2015.html#NasrollahiERABE15
N. Neverova, C. Wolf, G. Paci, G. Sommavilla, G.W. Taylor, F. Nebout, A multi-scale approach to gesture detection and recognition, in ICCVW, 2013, pp. 484–491, http://liris.cnrs.fr/publis/?id=6330
N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Multi-scale deep learning for gesture detection and localization. ECCVW. LNCS 8925, 474–490 (2014)
N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Hand segmentation with structured convolutional learning, in ACCV. LNCS, vol. 9005, 2015a, pp. 687–702. ISBN 978-3-319-16811-1. doi:10.1007/978-3-319-16811-1_45
N. Neverova, C. Wolf, G.W. Taylor, F. Nebout, Moddrop: adaptive multi-modal gesture recognition, in IEEE TPAMI, 2015b
J.Y.-H. Ng, J. Choi, J. Neumann, L.S. Davis, Actionflownet: learning motion representation for action recognition, 2016, arXiv:1612.03052
B. Ni, Y. Pei, Z. Liang, L. Lin, P. Moulin, Integrating multi-stage depth-induced contextual information for human action recognition and localization, in FG, April 2013, pp 1–8. doi:10.1109/FG.2013.6553756
B. Ni, X. Yang, S. Gao, Progressively parsing interactional objects for fine grained action detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1020–1028
N. Nishida, H. Nakayama, Multimodal gesture recognition using multi-stream recurrent neural network, in PSIVT, 2016, pp. 682–694
S. Oh, A large-scale benchmark dataset for event recognition in surveillance video, in CVPR, 2011, pp. 3153–3160. ISBN 978-1-4577-0394-2. doi:10.1109/CVPR.2011.5995586
E. Ohn-Bar, M.M. Trivedi, Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations, in IEEE-ITS, vol. 15(6), Dec 2014, pp. 2368–2377. ISSN 1524-9050. doi:10.1109/TITS.2014.2337331
F.J. Ordóñez, D. Roggen, Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)
W. Ouyang, X. Chu, X. Wang, Multi-source deep learning for human pose estimation, in CVPR, 2014, pp. 2337–2344
O.K. Oyedotun, A. Khashman, Deep learning in vision-based static hand gesture recognition, in Neural Computing and Applications, 2016, pp. 1–11
E. Park, X. Han, T.L. Berg, A.C. Berg, Combining multiple sources of knowledge in deep cnns for action recognition, in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2016, pp. 1–8
X. Peng, C. Schmid, Encoding feature maps of cnns for action recognition, in CVPR, THUMOS Challenge 2015 Workshop, 2015
X. Peng, C. Schmid, Multi-region two-stream r-cnn for action detection, in European Conference on Computer Vision (Springer, New York, 2016), pp. 744–759
X. Peng, L. Wang, Z. Cai, Y. Qiao, Q. Peng, Hybrid super vector with improved dense trajectories for action recognition, in ICCV Workshops, vol. 13, 2013
X. Peng, C. Zou, Y. Qiao, Q. Peng, Action recognition with stacked fisher vectors, in European Conference on Computer Vision (Springer, New York, 2014), pp. 581–595
X. Peng, L. Wang, Z. Cai, Y. Qiao, Action and Gesture Temporal Spotting with Super Vector Representation, 2015, pp. 518–527. ISBN 978-3-319-16178-5. doi:10.1007/978-3-319-16178-5_36
L. Pigou, S. Dieleman, P.-J. Kindermans, B. Schrauwen, Sign language recognition using convolutional neural networks, in European Conference on Computer Vision’14, 2015a, pp. 572–578. ISBN 978-3-319-16178-5. doi:10.1007/978-3-319-16178-5_40
L. Pigou, A.V.D. Oord, S. Dieleman, M.V. Herreweghe, J. Dambre, Beyond temporal pooling: recurrence and temporal convolutions for gesture recognition in video. CoRR, 2015b, arXiv.org/abs/1506.01911
Y. Poleg, A. Ephrat, S. Peleg, C. Arora, Compact cnn for indexing egocentric videos, in 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2016, pp. 1–9
Z. Qiu, Q. Li, T. Yao, T. Mei, Y. Rui, Msr asia msm at thumos challenge 2015, in CVPR Workshop, vol. 8 (2015)
A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, in Proceedings of International Conference on Learning Representations, 2016
H. Rahmani, A. Mian, 3d action recognition from novel viewpoints, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1506–1515
H. Rahmani, A. Mian, and M. Shah. Learning a deep model for human action recognition from novel viewpoints, arXiv preprint arXiv:1602.00828
S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: towards real-time object detection with region proposal networks, in Advances in neural information processing systems, 2015, pp. 91–99
N. Rhinehart, K.M. Kitani, Learning action maps of large environments via first-person vision, in Proceedings of European Conference on Computer Vision, 2016
A. Richard, J. Gall, Temporal action detection using a statistical language model, in CVPR, 2016
H. Sagha, J. del R. Milln, R. Chavarriaga, Detecting anomalies to improve classification performance in opportunistic sensor networks, in PERCOM Workshops, March 2011a, pp. 154–159. doi:10.1109/PERCOMW.2011.5766860
H. Sagha, S.T. Digumarti, J. del R. Millán, R. Chavarriaga, A. Calatroni, D. Roggen, G. Tröster, Benchmarking classification techniques using the opportunity human activity dataset, in IEEE SMC, Oct 2011b, pp. 36 –40. doi:10.1109/ICSMC.2011.6083628
S. Saha, G. Singh, M. Sapienza, P.H. Torr, F. Cuzzolin, Deep learning for detecting multiple space-time action tubes in videos, 2016, arXiv:1608.01529
J. Scharcanski, M.E. Celebi, Computer vision techniques for the diagnosis of skin cancer (Springer, New York, 2014)
A. Shahroudy, J. Liu, T.-T. Ng, G. Wang, NTU RGB+ D: a large scale dataset for 3d human activity analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016a, pp. 1010–1019
A. Shahroudy, T.-T. Ng, Y. Gong, G. Wang, Deep multimodal feature analysis for action recognition in RGB+ D videos, 2016b, arXiv:1603.07120
L. Shao, L. Liu, M. Yu, Kernelized multiview projection for robust action recognition. Int. J. Comput. Vis. 118(2), 115–129, June 2016, http://nrl.northumbria.ac.uk/24276/
Z. Shou, D. Wang, S.-F. Chang, Temporal action localization in untrimmed videos via multi-stage CNNS, in CVPR, 2016a
Z. Shou, D. Wang, S.-F. Chang, Temporal action localization in untrimmed videos via multi-stage CNNS. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016b, pp. 1049–1058
Z. Shu, K. Yun, D. Samaras, Action Detection with Improved Dense Trajectories and Sliding Window, Cham, 2015, pp. 541–551. ISBN 978-3-319-16178-5. doi:10.1007/978-3-319-16178-5_38
K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recognition in videos, in NIPS, 2014, pp. 568–576
B. Singh, T.K. Marks, M. Jones, O. Tuzel, M. Shao, A multi-stream bi-directional recurrent neural network for fine-grained action detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016a, pp. 1961–1970
S. Singh, C. Arora, C. Jawahar, First person action recognition using deep learned descriptors, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016b, pp. 2620–2628
K. Soomro, H. Idrees, M. Shah, Action localization in videos through context walk, in ICCV, 2015
W. Sultani, M. Shah, Automatic action annotation in weakly labeled videos. CoRR, 2016, arXiv.org/abs/1605.08125
L. Sun, K. Jia, D.-Y. Yeung, B.E. Shi, Human action recognition using factorized spatio-temporal convolutional networks, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4597–4605
J. Tompson, Y.L. Murphy Stein, K. Perlin, Real-time continuous pose recovery of human hands using convolutional networks. ACM-ToG, 33(5), 169:1–169:10 (2014). ISSN 0730-0301. doi:10.1145/2629500
D. Tran, L. Bourdev, R. Fergus, L. Torresani, M. Paluri, Learning spatiotemporal features with 3d convolutional networks, in 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, 2015, pp. 4489–4497
P. Turaga, A. Veeraraghavan, R. Chellappa, Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision, in CVPR, IEEE, 2008, pp. 1–8
J.R. Uijlings, K.E. Van De Sande, T. Gevers, A.W. Smeulders, Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)
G. Varol, I. Laptev, C. Schmid, Long-term temporal convolutions for action recognition, 2016, arXiv:1604.04494
V. Veeriah, N. Zhuang, G.-J. Qi, Differential recurrent neural networks for action recognition, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4041–4049
S. Vishwakarma, A. Agrawal, A survey on activity recognition and behavior understanding in video surveillance. Visual Comput. 29(10), 983–1009 (2013)
C. Vondrick, D. Ramanan, Video annotation and tracking with active learning, in NIPS, 2011
A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, K.J. Lang, Phoneme recognition using time-delay neural networks, in Readings in Speech Recognition, 1990, pp. 393–404
H. Wang, D. Oneata, J. Verbeek, C. Schmid, A robust and efficient video representation for action recognition. Int. J. Comput. Vis. 119, 1–20 (2015a)
H. Wang, W. Wang, L. Wang, How scenes imply actions in realistic videos? in ICIP IEEE, 2016a, pp. 1619–1623
J. Wang, W. Wang, R. Wang, W. Gao, et al., Deep alternative neural network: exploring contexts as early as possible for action recognition, in Advances in Neural Information Processing Systems, 2016b, pp. 811–819
L. Wang, Y. Qiao, X. Tang, Action recognition with trajectory-pooled deep-convolutional descriptors, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015b, pp. 4305–4314
L. Wang, Z. Wang, Y. Xiong, Y. Qiao, CUHK&SIAT submission for THUMOS15 action recognition challenge, in THUMOS Action Recognition challenge, 2015c, pp. 1–3
L. Wang, Y. Xiong, Z. Wang, Y. Qiao, Towards good practices for very deep two-stream convnets, 2015d, arXiv:1507.02159
L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, L. Van Gool, Temporal segment networks: towards good practices for deep action recognition, in European Conference on Computer Vision (Springer, New York, 2016c), pp. 20–36
P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, P.O. Ogunbona, Action recognition from depth maps using deep convolutional neural networks. IEEE Trans. Hum.-Mach. Syst. 46(4), 498–509 (2016d)
P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao, P. Ogunbona, Large-scale continuous gesture recognition using convolutional neural networks, in Proceedings of International Conference on Pattern RecognitionW, 2016e
P. Wang, Q. Song, H. Han, J. Cheng, Sequentially supervised long short-term memory for gesture recognition, in Cognitive Computation, 2016f, pp. 1–10
P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, P. Ogunbona, Large-scale isolated gesture recognition using convolutional neural networks, 2017, arXiv:1701.01814
X. Wang, A. Farhadi, A. Gupta, Actions\(\tilde{\,}\) transformations, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016g, pp. 2658–2667
Y. Wang, M. Hoai, Improving human action recognition by non-action classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2698–2707
Y. Wang, J. Song, L. Wang, L. Van Gool, O. Hilliges, Two-stream SR-CNNS for action recognition in videos, BMVC, 2016h
Z. Wang, L. Wang, W. Du, Y. Qiao, Exploring fisher vector and deep networks for action spotting, in CVPRW, 2015e, pp. 10–14. doi:10.1109/CVPRW.2015.7301330
P. Weinzaepfel, Z. Harchaoui, C. Schmid, Learning to track for spatio-temporal action localization, in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 3164–3172
P. Weinzaepfel, Z. Harchaoui, C. Schmid, Learning to track for spatio-temporal action localization, in ICCV, Santiago, Chile, Dec 2015, arXiv: 1506.01929
P.A. Wilson, B. Lewandowska-Tomaszczyk, Affective robotics: modelling and testing cultural prototypes. Cogn. Comput. 6(4), 814–840 (2014)
C. Wolf, E. Lombardi, J. Mille, O. Celiktutan, M. Jiu, E. Dogan, G. Eren, M. Baccouche, E. Dellandréa, C.-E. Bichot, C. Garcia, B. Sankur, Evaluation of video activity localizations integrating quality and quantity measurements, in CVIU, vol. 127, Oct 2014, pp. 14–30. ISSN 1077-3142. doi:10.1016/j.cviu.2014.06.014
D. Wu, L. Pigou, P.J. Kindermans, N. Le, L. Shao, J. Dambre, J.M. Odobez, Deep dynamic neural networks for multimodal gesture segmentation and recognition, in IEEE TPAMI, Feb 2016a
J. Wu, J. Cheng, C. Zhao, H. Lu, Fusing multi-modal features for gesture recognition, in ICMI, 2013, pp. 453–460. ISBN 978-1-4503-2129-7. doi:10.1145/2522848.2532589
J. Wu, P. Ishwar, J. Konrad, Two-stream CNNS for gesture-based verification and identification: learning user style, in CVPRW, 2016b
J. Wu, G. Wang, W. Yang, X. Ji, Action recognition with joint attention on multi-level deep features, 2016c, arXiv:1607.02556
Z. Wu, Y. Fu, Y.-G. Jiang, L. Sigal, Harnessing object and scene semantics for large-scale video understanding, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016d, pp. 3112–3121
X. Xu, T.M. Hospedales, S. Gong, Multi-task zero-shot action recognition with prioritised data augmentation, in Proceedings of European Conference on Computer Vision, 2016
Z. Xu, L. Zhu, Y. Yang, A.G. Hauptmann, UTS-CMU at THUMOS 2015, in CVPR THUMOS Challenge, 2015a
Z. Xu, L. Zhu, Y. Yang, A.G. Hauptmann, UTS-CMU at THUMOS, 2015b
J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-sequential images using hidden Markov model, in 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1992. Proceedings CVPR’92, IEEE, 1992, pp. 379–385
Y. Ye, Y. Tian, Embedding sequential information into spatiotemporal features for action recognition, in CVPRW, 2016
S. Yeung, O. Russakovsky, G. Mori, L. Fei-Fei, End-to-end learning of action detection from frame glimpses in videos, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2678–2687
D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wang et al., An introduction to computational networks and the computational network toolkit (Technical Report, TR MSR, 2014)
J. Yu, K. Weng, G. Liang, G. Xie, A vision-based robotic grasping system using deep learning for 3d object recognition and pose estimation, in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2013, pp. 1175–1180
J. Yuan, B. Ni, X. Yang, A. Kassim, Temporal action localization with pyramid of score distribution features, in CVPR, 2016
J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, G. Toderici, Beyond short snippets: deep networks for video classification, in CVPR, 2015, pp. 4694–4702
S. Zha, F. Luisier, W. Andrews, N. Srivastava, R. Salakhutdinov, Exploiting image-trained cnn architectures for unconstrained video classification, 2015, arXiv:1503.04144
B. Zhang, L. Wang, Z. Wang, Y. Qiao, H. Wang, Real-time action recognition with enhanced motion vector CNNS, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2718–2726
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep features for scene recognition using places database, in NIPS, 2014, pp. 487–495
T. Zhou, N. Li, X. Cheng, Q. Xu, L. Zhou, Z. Wu, Learning semantic context feature-tree for action recognition via nearest neighbor fusion. Neurocomputing 201, 1–11 (2016)
Y. Zhou, B. Ni, R. Hong, M. Wang, Q. Tian, Interaction part mining: a mid-level approach for fine-grained action recognition, in CVPR, 2015, pp. 3323–3331
G. Zhu, L. Zhang, L. Mei, J. Shao, J. Song, P. Shen, Large-scale isolated gesture recognition using pyramidal 3d convolutional networks, in Proceedings of International Conference on Pattern RecognitionW, 2016a
W. Zhu, J. Hu, G. Sun, X. Cao, Y. Qiao, A key volume mining deep framework for action recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016b, pp. 1991–1999
C.L. Zitnick, P. Dollár, Edge boxes: locating object proposals from edges, in European Conference on Computer Vision (Springer, New York, 2014), pp. 391–405
Acknowledgements
This work has been partially supported by the Spanish projects TIN2015-66951-C2-2-R and TIN2016-74946-P (MINECO/FEDER, UE) and CERCA Programme / Generalitat de Catalunya. Hugo Jair Escalante was supported by CONACyT under grants CB2014-241306 and PN-215546.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Asadi-Aghbolaghi, M. et al. (2017). Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey. In: Escalera, S., Guyon, I., Athitsos, V. (eds) Gesture Recognition. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-57021-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-57021-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57020-4
Online ISBN: 978-3-319-57021-1
eBook Packages: Computer ScienceComputer Science (R0)