Nothing Special   »   [go: up one dir, main page]

Skip to main content

Layout Analysis and Content Classification in Digitized Books

  • Conference paper
  • First Online:
Digital Libraries and Multimedia Archives (IRCDL 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 701))

Included in the following conference series:

Abstract

Automatic layout analysis has proven to be extremely important in the process of digitization of large amounts of documents. In this paper we present a mixed approach to layout analysis, introducing a SVM-aided layout segmentation process and a classification process based on local and geometrical features. The final output of the automatic analysis algorithm is a complete and structured annotation in JSON format, containing the digitalized text as well as all the references to the illustrations of the input page, and which can be used by visualization interfaces as well as annotation interfaces. We evaluate our algorithm on a large dataset built upon the first volume of the “Enciclopedia Treccani”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonacopoulos, A., Gatos, B., Karatzas, D.: ICDAR 2003 page segmentation competition. In: ICDAR, p. 688. IEEE (2003)

    Google Scholar 

  2. Appiani, E., Cesarini, F., Colla, A.M., Diligenti, M., Gori, M., Marinai, S., Soda, G.: Automatic document classification and indexing in high-volume applications. Int. J. Doc. Anal. Recogn. 4(2), 69–83 (2001)

    Article  Google Scholar 

  3. Baird, H., Jones, S., Fortune, S.: Image segmentation by shape-directed covers. In: International Conference on Pattern Recognition, vol. 1, pp. 820–825, June 1990

    Google Scholar 

  4. Baraldi, L., Grana, C., Cucchiara, R.: A deep siamese network for scene detection in broadcast videos. In: ACM International Conference on Multimedia, pp. 1199–1202. ACM (2015)

    Google Scholar 

  5. Bertini, M., Del Bimbo, A., Serra, G., Torniai, C., Cucchiara, R., Grana, C., Vezzani, R.: Dynamic pictorial ontologies for video digital libraries annotation. In: IEEE MultiMedia Magazine, pp. 42–51. ACM (2009)

    Google Scholar 

  6. Cesarini, F., Lastri, M., Marinai, S., Soda, G.: Encoding of modified XY trees for document classification. In: Proceedings of the Sixth International Conference on Document Analysis and Recognition, pp. 1131–1136. IEEE (2001)

    Google Scholar 

  7. Chen, K., Yin, F., Liu, C.L.: Hybrid page segmentation with efficient whitespace rectangles extraction and grouping. In: 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 958–962. IEEE (2013)

    Google Scholar 

  8. Coüasnon, B., Lemaitre, A.: Recognition of tables and forms. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 647–677. Springer, London (2014)

    Chapter  Google Scholar 

  9. Mauro, N., Ferilli, S., Esposito, F.: Learning to Recognize Critical Cells in Document Tables. In: Agosti, M., Esposito, F., Ferilli, S., Ferro, N. (eds.) IRCDL 2012. CCIS, vol. 354, pp. 105–116. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35834-0_12

    Chapter  Google Scholar 

  10. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  11. Esposito, F., Malerba, D., Lisi, F.A.: Machine learning for intelligent processing of printed documents. J. Intell. Inf. Syst. 14(2–3), 175–198 (2000)

    Article  Google Scholar 

  12. Grana, C., Serra, G., Manfredi, M., Coppi, D., Cucchiara, R.: Layout analysis and content enrichment of digitized books. Multimed. Tools Appl. 75(7), 3879–3900 (2016)

    Article  Google Scholar 

  13. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive XY cut using bounding boxes of connected components. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 2, pp. 952–955. IEEE (1995)

    Google Scholar 

  14. Kaur, S., Sharma, D.V.: Table structure identification from document images: a survey. Int. J. Innov. Adv. Comput. Sci. 4, 581–585 (2015)

    Google Scholar 

  15. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area Voronoi diagram. Comput. Vis. Image Underst. 70(3), 370–382 (1998)

    Article  Google Scholar 

  16. Lazzara, G., Levillain, R., Géraud, T., Jacquelet, Y., Marquegnies, J., Crépin-Leblond, A.: The scribo module of the olena platform: a free software framework for document image analysis. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 252–258. IEEE (2011)

    Google Scholar 

  17. Liu, Y., Mitra, P., Giles, C.L.: A fast preprocessing method for table boundary detection: narrowing down the sparse lines using solely coordinate information. In: The Eighth IAPR International Workshop on Document Analysis Systems, pp. 431–438. IEEE (2008)

    Google Scholar 

  18. Mandal, S., Chowdhury, S.P., Das, A.K., Chanda, B.: Detection and segmentation of tables and math-zones from document images. In: Proceedings of the 2006 ACM Symposium on Applied Computing. SAC 2006, pp. 841–846. ACM (2006)

    Google Scholar 

  19. Mandal, S., Chowdhury, S., Das, A., Chanda, B.: A simple and effective table detection system from document images. Int. J. Doc. Anal. Recogn. (IJDAR) 8(2–3), 172–182 (2006)

    Article  Google Scholar 

  20. Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive probabilistic Hough transform. Comput. Vis. Image Underst. 78(1), 119–137 (2000). http://dx.doi.org/10.1006/cviu.1999.0831

    Article  Google Scholar 

  21. Phillips, I.T., Chhabra, A.K.: Empirical performance evaluation of graphics recognition systems. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 849–870 (1999)

    Article  Google Scholar 

  22. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. (CSUR) 34(1), 1–47 (2002)

    Article  Google Scholar 

  23. Smith, R.: An overview of the Tesseract OCR engine. In: International Conference on Document Analysis and Recognition, pp. 629–633. IEEE (2007)

    Google Scholar 

  24. Zanibbi, R., Blostein, D., Cordy, J.: A survey of table recognition. Doc. Anal. Recogn. 7(1), 1–16 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Baraldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Corbelli, A., Baraldi, L., Balducci, F., Grana, C., Cucchiara, R. (2017). Layout Analysis and Content Classification in Digitized Books. In: Agosti, M., Bertini, M., Ferilli, S., Marinai, S., Orio, N. (eds) Digital Libraries and Multimedia Archives. IRCDL 2016. Communications in Computer and Information Science, vol 701. Springer, Cham. https://doi.org/10.1007/978-3-319-56300-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56300-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56299-5

  • Online ISBN: 978-3-319-56300-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics