Abstract
This paper presents an implementation of Grammatical Evolution on a GPU architecture. Our proposal, Embedded Grammars, implements the grammar directly in the code. Although more rigid, it allows to compute the decodification in parallel with the evaluation of the individuals. We tested three different grammars with a set of eight symbolic regression problems. The symbolic regression problems consists on obtaining a mathematical expression in the form \(y=f(x)\), in our case, from a set of 288 pairs x, y. The analysis of the results shows that Embedded Grammars are better not only in terms of execution time, but also in quality when compared with an implementation on a CPU. Speed-up results are also better than those presented in the literature.
Similar content being viewed by others
References
Hidalgo, J.I., Fernndez, R., Colmenar, J.M., Cioffi, F., Risco-Martn, J.L., Gonzlez-Doncel, G.: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys. Appl. Soft Comput. 40, 429–438 (2016)
Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Computat. 6(5), 443–462 (2002)
Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on GPGPUs. Springer, Heidelberg (2013)
Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of grammatical evolution using graphics processing units: computational intelligence on consumer games and graphics hardware. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2011, pp. 431–438. ACM, NY (2011)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Computat. 5(4), 349–358 (2001)
Ryan, C., O’Neill, M., Collins, J.J.: Grammatical evolution: solving trigonometric identities. In: Proceedings of Mendel 1998: 4th International Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks and Rough Sets, pp. 111–119 (1998)
Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms using grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Tettamanzi, C. (eds.) EuroGP 2002. LNCS, pp. 278–287. Springer, Heidelberg (2002). doi:10.1007/3-540-45984-7_27
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930
Hidalgo, J.I., Maqueda, E., Risco-Martín, J.L., Cuesta-Infante, A., Colmenar, J.M., Nobel, J.: glucmodel: a monitoring and modeling system for chronic diseases applied to diabetes. J. Biomed. Inform. 48, 183–192 (2014)
CUDA Nvidia. Programming guide (2008)
Acknowledgements
This work was supported by the Spanish Government Minister of Science and Innovation under grants TIN2014-54806-R, TIN2015-65277-R and CAPAP-H5 network (TIN2014-53522) and TIN2015-65460-C2. J.I. Hidalgo also acknowledges the support of the Spanish Ministry of Education mobility grant PRX16/00216.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hidalgo, J.I., Cervigón, C., Velasco, J.M., Colmenar, J.M., García-Sánchez, C., Botella, G. (2017). Embedded Grammars for Grammatical Evolution on GPGPU. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-55849-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55848-6
Online ISBN: 978-3-319-55849-3
eBook Packages: Computer ScienceComputer Science (R0)