Nothing Special   »   [go: up one dir, main page]

Skip to main content

Embedded Grammars for Grammatical Evolution on GPGPU

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2017)

Abstract

This paper presents an implementation of Grammatical Evolution on a GPU architecture. Our proposal, Embedded Grammars, implements the grammar directly in the code. Although more rigid, it allows to compute the decodification in parallel with the evaluation of the individuals. We tested three different grammars with a set of eight symbolic regression problems. The symbolic regression problems consists on obtaining a mathematical expression in the form \(y=f(x)\), in our case, from a set of 288 pairs xy. The analysis of the results shows that Embedded Grammars are better not only in terms of execution time, but also in quality when compared with an implementation on a CPU. Speed-up results are also better than those presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Hidalgo, J.I., Fernndez, R., Colmenar, J.M., Cioffi, F., Risco-Martn, J.L., Gonzlez-Doncel, G.: Using evolutionary algorithms to determine the residual stress profile across welds of age-hardenable aluminum alloys. Appl. Soft Comput. 40, 429–438 (2016)

    Article  Google Scholar 

  2. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  4. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Computat. 6(5), 443–462 (2002)

    Article  Google Scholar 

  5. Tsutsui, S., Collet, P.: Massively Parallel Evolutionary Computation on GPGPUs. Springer, Heidelberg (2013)

    Book  Google Scholar 

  6. Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of grammatical evolution using graphics processing units: computational intelligence on consumer games and graphics hardware. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2011, pp. 431–438. ACM, NY (2011)

    Google Scholar 

  7. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Computat. 5(4), 349–358 (2001)

    Article  Google Scholar 

  8. Ryan, C., O’Neill, M., Collins, J.J.: Grammatical evolution: solving trigonometric identities. In: Proceedings of Mendel 1998: 4th International Conference on Genetic Algorithms, Optimization Problems, Fuzzy Logic, Neural Networks and Rough Sets, pp. 111–119 (1998)

    Google Scholar 

  9. Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms using grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Tettamanzi, C. (eds.) EuroGP 2002. LNCS, pp. 278–287. Springer, Heidelberg (2002). doi:10.1007/3-540-45984-7_27

    Chapter  Google Scholar 

  10. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930

    Chapter  Google Scholar 

  11. Hidalgo, J.I., Maqueda, E., Risco-Martín, J.L., Cuesta-Infante, A., Colmenar, J.M., Nobel, J.: glucmodel: a monitoring and modeling system for chronic diseases applied to diabetes. J. Biomed. Inform. 48, 183–192 (2014)

    Article  Google Scholar 

  12. CUDA Nvidia. Programming guide (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Government Minister of Science and Innovation under grants TIN2014-54806-R, TIN2015-65277-R and CAPAP-H5 network (TIN2014-53522) and TIN2015-65460-C2. J.I. Hidalgo also acknowledges the support of the Spanish Ministry of Education mobility grant PRX16/00216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ignacio Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hidalgo, J.I., Cervigón, C., Velasco, J.M., Colmenar, J.M., García-Sánchez, C., Botella, G. (2017). Embedded Grammars for Grammatical Evolution on GPGPU. In: Squillero, G., Sim, K. (eds) Applications of Evolutionary Computation. EvoApplications 2017. Lecture Notes in Computer Science(), vol 10199. Springer, Cham. https://doi.org/10.1007/978-3-319-55849-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55849-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55848-6

  • Online ISBN: 978-3-319-55849-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics