Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Comparative Study of Different Grammar-Based Genetic Programming Approaches

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10196))

Included in the following conference series:

Abstract

Grammars are useful formalisms to specify constraints, and not surprisingly, they have attracted the attention of Evolutionary Computation (EC) researchers to enforce problem restrictions. Context-Free-Grammar GP (CFG-GP) established the foundations for the application of grammars in Genetic Programming (GP), whilst Grammatical Evolution (GE) popularised the use of these approaches, becoming one of the most used GP variants. However, studies have shown that GE suffers from issues that have impact on its performance. To minimise these issues, several extensions have been proposed, which made the distinction between GE and CFG-GP less noticeable. Another direction was followed by Structured Grammatical Evolution (SGE) that maintains the separation between genotype and phenotype from GE, but overcomes most of its issues. Our goal is to perform a comparative study between CFG-GP, GE and SGE to examine their relative performance. The results show that in most of the selected benchmarks, CFG-GP and SGE have a similar performance, showing that SGE is a good alternative to GE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Byrne, J., O’Neill, M., Brabazon, A.: Structural and nodal mutation in grammatical evolution. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, New York, pp. 1881–1882 (2009)

    Google Scholar 

  2. Byrne, J., O’Neill, M., McDermott, J., Brabazon, A.: An analysis of the behaviour of mutation in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 14–25. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7_2

    Chapter  Google Scholar 

  3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  4. Langdon, W.B., Poli, R.: Why ants are hard. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, 22–25 July 1998, pp. 193–201. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA (1998)

    Google Scholar 

  5. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  6. Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2016)

    Article  Google Scholar 

  7. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., ONeill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010)

    Article  Google Scholar 

  8. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  9. ONeill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Genetic Programming, vol. 4. Springer, New York (2003)

    Book  Google Scholar 

  10. Rothlauf, F.: On the locality of representations. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1608–1609. Springer, Heidelberg (2003). doi:10.1007/3-540-45110-2_48

    Chapter  Google Scholar 

  11. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg (2006)

    Book  MATH  Google Scholar 

  12. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). doi:10.1007/11729976_29

    Chapter  Google Scholar 

  13. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930

    Chapter  Google Scholar 

  14. Whigham, P.A.: Inductive bias and genetic programming. In: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA (Conf. Publ. No. 414), pp. 461–466. IET (1995)

    Google Scholar 

  15. Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015)

    Google Scholar 

  16. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41 (1995)

    Google Scholar 

  17. White, B.C., Reif, D.M., Gilbert, J.C., Moore, J.H.: A statistical comparison of grammatical evolution strategies in the domain of human genetics. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 491–497. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Lourenço .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lourenço, N., Ferrer, J., Pereira, F.B., Costa, E. (2017). A Comparative Study of Different Grammar-Based Genetic Programming Approaches. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55696-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55695-6

  • Online ISBN: 978-3-319-55696-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics