Abstract
Grammars are useful formalisms to specify constraints, and not surprisingly, they have attracted the attention of Evolutionary Computation (EC) researchers to enforce problem restrictions. Context-Free-Grammar GP (CFG-GP) established the foundations for the application of grammars in Genetic Programming (GP), whilst Grammatical Evolution (GE) popularised the use of these approaches, becoming one of the most used GP variants. However, studies have shown that GE suffers from issues that have impact on its performance. To minimise these issues, several extensions have been proposed, which made the distinction between GE and CFG-GP less noticeable. Another direction was followed by Structured Grammatical Evolution (SGE) that maintains the separation between genotype and phenotype from GE, but overcomes most of its issues. Our goal is to perform a comparative study between CFG-GP, GE and SGE to examine their relative performance. The results show that in most of the selected benchmarks, CFG-GP and SGE have a similar performance, showing that SGE is a good alternative to GE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Byrne, J., O’Neill, M., Brabazon, A.: Structural and nodal mutation in grammatical evolution. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, New York, pp. 1881–1882 (2009)
Byrne, J., O’Neill, M., McDermott, J., Brabazon, A.: An analysis of the behaviour of mutation in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 14–25. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12148-7_2
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Langdon, W.B., Poli, R.: Why ants are hard. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R. (eds.) Genetic Programming 1998: Proceedings of the Third Annual Conference, 22–25 July 1998, pp. 193–201. Morgan Kaufmann, University of Wisconsin, Madison, Wisconsin, USA (1998)
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Lourenço, N., Pereira, F.B., Costa, E.: Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2016)
Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., ONeill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–396 (2010)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
ONeill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Genetic Programming, vol. 4. Springer, New York (2003)
Rothlauf, F.: On the locality of representations. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1608–1609. Springer, Heidelberg (2003). doi:10.1007/3-540-45110-2_48
Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg (2006)
Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 320–330. Springer, Heidelberg (2006). doi:10.1007/11729976_29
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). doi:10.1007/BFb0055930
Whigham, P.A.: Inductive bias and genetic programming. In: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA (Conf. Publ. No. 414), pp. 461–466. IET (1995)
Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1111–1118. ACM (2015)
Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, vol. 16, pp. 33–41 (1995)
White, B.C., Reif, D.M., Gilbert, J.C., Moore, J.H.: A statistical comparison of grammatical evolution strategies in the domain of human genetics. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 491–497. IEEE (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lourenço, N., Ferrer, J., Pereira, F.B., Costa, E. (2017). A Comparative Study of Different Grammar-Based Genetic Programming Approaches. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2017. Lecture Notes in Computer Science(), vol 10196. Springer, Cham. https://doi.org/10.1007/978-3-319-55696-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-55696-3_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55695-6
Online ISBN: 978-3-319-55696-3
eBook Packages: Computer ScienceComputer Science (R0)