Abstract
The treatment of ischemic stroke requires fast decisions for which the potentially fatal risks of an intervention have to be weighted against the presumed benefits. Ideally, the treating physician could predict the outcome under different circumstances beforehand and thus make an informed treatment decision. To this end, this article presents two new methods: one for lesion outcome and one for clinical outcome prediction from multispectral magnetic resonance sequences. After extracting tailored image features, a random forest classifier respectively regressor is trained. Both approaches were submitted to the Ischemic Stroke Lesion Segmentation (ISLES) 2017 challenge and obtained a first and third place. The outcome underlines the robustness of our designed features and stresses the approach’s resilience against overfitting when faced with small training datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For more details on the ISLES 2016 challenge, see http://www.isles-challenge.org.
References
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis, 1st edn. Springer, London (2013)
Forkert, N.D., Siemonsen, S., Dalski, M., et al.: Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps? In: Molthen, R.C., Weaver, J.B. (eds.) SPIE Medical Imaging, vol. 9038, p. 90381O. International Society for Optics and Photonics (2014)
Forkert, N.D., Verleger, T., Cheng, B., et al.: Multiclass support vector machine-based lesion mapping predicts functional outcome in ischemic stroke patients. PLOS ONE 10(6), e0129569 (2015)
Galinovic, I.: Evaluation of automated and manual perfusion MRI post-processing: the search for accurate tissue fate prediction in acute ischemic stroke. Ph.D. thesis, Medizinische Fakultät Charité-Universitätsmedizin Berlin (2013)
Gonzalez, R.G., Hirsch, J.A., Koroshetz, W.J., Lev, M.H., Schaefer, P.W. (eds.): Acute Ischemic Stroke - Imaging and Intervention, 2 edn. Springer, Berlin (2006)
Kemmling, A., Flottmann, F., Forkert, N.D., et al.: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J. Cereb. Blood Flow Metab. 35(9), 1397–1405 (2015)
Maas, M.B., Lev, M.H., Ay, H., et al.: Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 40(9), 3001–3005 (2009)
Maier, O.: MedPy - Medical image processing in Python (2016)
Maier, O., Handels, H.: MS-lesion segmentation in MRI with random forests. In: Pham, D. (ed.) Longitudinal Multiple Sclerosis Lesion Segmentation Challenge, ISBI (2015)
Maier, O., Menze, B.H., von der Gablentz, J., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)
Maier, O., Schröder, C., Forkert, N.D., Martinetz, T., Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PLOS ONE 10(12), e0145118 (2015)
Maier, O., Wilms, M., von der Gablentz, J., et al.: Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 240, 89–100 (2015)
Maier, O., Wilms, M., Handels, H.: Image features for brain lesion segmentation using random forests. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 119–130. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6_11
Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Straka, M., Albers, G.W., Bammer, R.: Real-time diffusion-perfusion mismatch analysis in acute stroke. J. Magn. Reson. Imaging 32(5), 1024–37 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Maier, O., Handels, H. (2016). Predicting Stroke Lesion and Clinical Outcome with Random Forests. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-55524-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55523-2
Online ISBN: 978-3-319-55524-9
eBook Packages: Computer ScienceComputer Science (R0)