Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting Stroke Lesion and Clinical Outcome with Random Forests

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10154))

Abstract

The treatment of ischemic stroke requires fast decisions for which the potentially fatal risks of an intervention have to be weighted against the presumed benefits. Ideally, the treating physician could predict the outcome under different circumstances beforehand and thus make an informed treatment decision. To this end, this article presents two new methods: one for lesion outcome and one for clinical outcome prediction from multispectral magnetic resonance sequences. After extracting tailored image features, a random forest classifier respectively regressor is trained. Both approaches were submitted to the Ischemic Stroke Lesion Segmentation (ISLES) 2017 challenge and obtained a first and third place. The outcome underlines the robustness of our designed features and stresses the approach’s resilience against overfitting when faced with small training datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more details on the ISLES 2016 challenge, see http://www.isles-challenge.org.

References

  1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  2. Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis, 1st edn. Springer, London (2013)

    Google Scholar 

  3. Forkert, N.D., Siemonsen, S., Dalski, M., et al.: Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps? In: Molthen, R.C., Weaver, J.B. (eds.) SPIE Medical Imaging, vol. 9038, p. 90381O. International Society for Optics and Photonics (2014)

    Google Scholar 

  4. Forkert, N.D., Verleger, T., Cheng, B., et al.: Multiclass support vector machine-based lesion mapping predicts functional outcome in ischemic stroke patients. PLOS ONE 10(6), e0129569 (2015)

    Google Scholar 

  5. Galinovic, I.: Evaluation of automated and manual perfusion MRI post-processing: the search for accurate tissue fate prediction in acute ischemic stroke. Ph.D. thesis, Medizinische Fakultät Charité-Universitätsmedizin Berlin (2013)

    Google Scholar 

  6. Gonzalez, R.G., Hirsch, J.A., Koroshetz, W.J., Lev, M.H., Schaefer, P.W. (eds.): Acute Ischemic Stroke - Imaging and Intervention, 2 edn. Springer, Berlin (2006)

    Google Scholar 

  7. Kemmling, A., Flottmann, F., Forkert, N.D., et al.: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J. Cereb. Blood Flow Metab. 35(9), 1397–1405 (2015)

    Article  Google Scholar 

  8. Maas, M.B., Lev, M.H., Ay, H., et al.: Collateral vessels on CT angiography predict outcome in acute ischemic stroke. Stroke 40(9), 3001–3005 (2009)

    Article  Google Scholar 

  9. Maier, O.: MedPy - Medical image processing in Python (2016)

    Google Scholar 

  10. Maier, O., Handels, H.: MS-lesion segmentation in MRI with random forests. In: Pham, D. (ed.) Longitudinal Multiple Sclerosis Lesion Segmentation Challenge, ISBI (2015)

    Google Scholar 

  11. Maier, O., Menze, B.H., von der Gablentz, J., et al.: ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017)

    Article  Google Scholar 

  12. Maier, O., Schröder, C., Forkert, N.D., Martinetz, T., Handels, H.: Classifiers for ischemic stroke lesion segmentation: a comparison study. PLOS ONE 10(12), e0145118 (2015)

    Google Scholar 

  13. Maier, O., Wilms, M., von der Gablentz, J., et al.: Extra Tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 240, 89–100 (2015)

    Article  Google Scholar 

  14. Maier, O., Wilms, M., Handels, H.: Image features for brain lesion segmentation using random forests. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 119–130. Springer, Cham (2016). doi:10.1007/978-3-319-30858-6_11

    Chapter  Google Scholar 

  15. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Straka, M., Albers, G.W., Bammer, R.: Real-time diffusion-perfusion mismatch analysis in acute stroke. J. Magn. Reson. Imaging 32(5), 1024–37 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oskar Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Maier, O., Handels, H. (2016). Predicting Stroke Lesion and Clinical Outcome with Random Forests. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol 10154. Springer, Cham. https://doi.org/10.1007/978-3-319-55524-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55524-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55523-2

  • Online ISBN: 978-3-319-55524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics