Nothing Special   »   [go: up one dir, main page]

Skip to main content

Generalized Bent Functions and Their Gray Images

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10064))

Included in the following conference series:

Abstract

In this paper we prove that generalized bent (gbent) functions defined on \(\mathbb {F}_2^n\) with values in \(\mathbb {Z}_{2^k}\) are regular, and show connections between the (generalized) Walsh spectrum of these functions and their components. Moreover we analyze generalized bent and semibent functions with values in \(\mathbb {Z}_{16}\) in detail, extending earlier results on gbent functions with values in \(\mathbb {Z}_4\) and \(\mathbb {Z}_8\).

The rights of this work are transferred to the extent transferable according to title 17 §105 U.S.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlet, C.: \(\mathbb{Z}_{2^k}\)-linear codes. IEEE Trans. Inf. Theory 44(4), 1543–1547 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hodz̆ić, S., Pasalic, E.: Generalized bent functions-some general construction methods and related necessary and sufficient conditions. Crypt. Commun. 7, 469–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu, H., Feng, K., Feng, R.: Nonexistence of generalized bent functions from \(\mathbb{Z}_2^n\) to \(\mathbb{Z}_m\). Des. Codes Crypt. 82, 647–662 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Martinsen, T., Meidl, W., Stănică, P.: Generalized bent functions and their Gray images. http://arxiv.org/pdf/1511.01438

  5. Martinsen, T., Meidl, W., Stănică, P.: Partial spread and vectorial generalized bent functions. Des.Codes Crypt. (2017, to appear)

    Google Scholar 

  6. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory - Ser. A 40, 90–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Schmidt, K.U.: Quaternary constant-amplitude codes for multicode CDMA. IEEE Trans. Inform. Theory 55(4), 1824–1832 (2009)

    Article  MathSciNet  Google Scholar 

  8. Solé, P., Tokareva, N.: Connections between quaternary and binary bent functions. Prikl. Diskr. Mat. 1, 16–18 (2009). http://eprint.iacr.org/2009/544.pdf

    Google Scholar 

  9. Stănică, P., Martinsen, T., Gangopadhyay, S., Singh, B.K.: Bent and generalized bent Boolean functions. Des. Codes Crypt. 69, 77–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary bent functions. J. Comb. Theory - Ser. A 117, 668–682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Work by P.S. started during a very enjoyable visit at RICAM. Both the second and third named author thank the institution for the excellent working conditions. The second author is supported by the Austrian Science Fund (FWF) Project no. M 1767-N26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantelimon Stănică .

Editor information

Editors and Affiliations

A Appendix

A Appendix

Proof of Theorem 4 : Let \(\mathbf{u}\in {\mathbb V}_n\). Eq. (2) for \(k=4\) implies

$$\begin{aligned} \nonumber 16\sqrt{2}|{\mathcal H}_f^{(16)}(\mathbf{u})|^2&= (2+\sqrt{2+\sqrt{2}}) 4\sqrt{2}|{\mathcal H}_d^{(8)}(\mathbf{u})|^2+(2-\sqrt{2+\sqrt{2}}) 4\sqrt{2}|{\mathcal H}_{d+4a_1}^{(8)}(\mathbf{u})|^2\\&\qquad +8\sqrt{4-2\sqrt{2}}\ \mathfrak {I}\left( \overline{{\mathcal H}_d^{(8)}(\mathbf{u})}{\mathcal H}_{d+4a_1}^{(8)}(\mathbf{u})\right) . \end{aligned}$$
(4)

We denote by ACDW the Walsh-Hadamard transforms \({\mathcal W}_{a_4}(\mathbf{u})\), \({\mathcal W}_{a_2\oplus a_4}(\mathbf{u})\), \({\mathcal W}_{a_3\oplus a_4}(\mathbf{u})\), \({\mathcal W}_{a_2\oplus a_3\oplus a_4}(\mathbf{u})\) (in that order). We denote by BXYZ the Walsh-Hadamard transforms \({\mathcal W}_{a_1\oplus a_4}(\mathbf{u})\), \({\mathcal W}_{a_1\oplus a_2\oplus a_4}(\mathbf{u})\), \({\mathcal W}_{a_1\oplus a_3\oplus a_4}(\mathbf{u})\), \({\mathcal W}_{a_1\oplus a_2\oplus a_3\oplus a_4}(\mathbf{u})\) (in that order). By [9, Lemma 17], we know that the generalized Walsh-Hadamard transform of any function in \(\mathcal {GB}_n^8\), say d and \(d+4a_1\) with \(d = a_2+2a_3+2^2a_4\), is of the form

$$\begin{aligned} 4{\mathcal H}_d^{(8)}(\mathbf{u}) = \alpha _0 A+\alpha _1 C+\alpha _2 D+\alpha _3 W, \quad 4{\mathcal H}_{d+4a_1}^{(8)}(\mathbf{u}) = \alpha _0 B+\alpha _1 X+\alpha _2 Y+\alpha _3 Z, \end{aligned}$$

where \(\alpha _0= 1+(1+\sqrt{2})i\), \(\alpha _1=1+(1-\sqrt{2})i\), \(\alpha _2=1+\sqrt{2}-i\), \(\alpha _3=1-\sqrt{2}-i\), and moreover that (see also [9, Corollary 18]),

$$\begin{aligned} 4\sqrt{2}|{\mathcal H}_d^{(8)}(\mathbf{u})|^2&=A^2-C^2+2 C D+D^2-2 A W-W^2+\sqrt{2} (A^2+C^2+D^2+W^2)\\ \nonumber 4\sqrt{2}|{\mathcal H}_{d+4a_1}^{(8)}(\mathbf{u})|^2&=B^2-X^2+2 X Y+Y^2-2 B Z -Z^2+\sqrt{2} (B^2+X^2+Y^2+Z^2). \end{aligned}$$
(5)

Furthermore, with straightforward computations we get

$$\begin{aligned} \begin{aligned}&8\sqrt{4-2\sqrt{2}}\ \mathfrak {I}\left( \overline{{\mathcal H}_b^{(8)}(\mathbf{u})}{\mathcal H}_{b+4a_1}^{(8)}(\mathbf{u})\right) \\&=2\sqrt{2-\sqrt{2}}\, (B C + B D - A X - W X - A Y + W Y + C Z - D Z)\\&\quad +2\sqrt{4-2\sqrt{2}}\, (B D + W X - A Y - C Z). \end{aligned} \end{aligned}$$
(6)

Using (5) and (6) in Eq. (4) we obtain

$$\begin{aligned} \nonumber&16\sqrt{2}|{\mathcal H}_f^{(16)}(\mathbf{u})|^2\\ \nonumber&= 2 (A^2 + B^2 - C^2 + 2 C D + D^2 - 2 A W - W^2 - X^2 + 2 X Y + Y^2 - 2 B Z - Z^2)\\ \nonumber&\quad + 2 \sqrt{2} (A^2+B^2+C^2+D^2+W^2+X^2+Y^2+Z^2)\\&\quad +\sqrt{2-\sqrt{2}}\, (A^2 - B^2 + 2 B C + C^2 + D^2 + W^2 - 2 A X - 4 W X - X^2 \\ \nonumber&\qquad + 2 W Y - Y^2 + 4 C Z - 2 D Z - Z^2)\\ \nonumber&\quad +2\sqrt{2+\sqrt{2}}\, (A^2 - B^2 + B D + C D + D^2 - A W + W X - A Y - X Y\\ \nonumber&\qquad - Y^2 + B Z - C Z). \end{aligned}$$
(7)

If f is gbent in \(\mathcal {GB}_n^{16}\), i.e., \(|{\mathcal H}_f^{(16)}(\mathbf{u})|^2 = 2^n\), by the linear independence of \(\{1,\sqrt{2},\sqrt{2-\sqrt{2}},\sqrt{2+\sqrt{2}}\}\) (as easily shown, the set forms a basis of \({\mathbb Q}(\sqrt{2},\sqrt{2-\sqrt{2}})\)), we arrive at the following system of equations with solutions in \(\mathbb {Z}\),

$$\begin{aligned} \begin{aligned}&A^2 + B^2 + C^2 + D^2 + W^2 + X^2 + Y^2 + Z^2=2^{n+3}\\&A^2 + B^2 - C^2 + 2 C D + D^2 - 2 A W - W^2 - X^2 + 2 X Y + Y^2 - 2 B Z - Z^2=0\\&A^2 - B^2 + 2 B C + C^2 + D^2 + W^2 - 2 A X - 4 W X - X^2 \\&\qquad \qquad \qquad \qquad \qquad + 2 W Y - Y^2 + 4 C Z - 2 D Z - Z^2=0\\&A^2 - B^2 + B D + C D + D^2 - A W + W X - A Y - X Y - Y^2 + B Z - C Z=0. \end{aligned} \end{aligned}$$
(8)

Let \(2^t\) be the largest power of 2 which divides all, ABCDXYZ and W, i.e., \(A=2^t A_1\), etc., with at least one of the \(A_1,B_1,\ldots \) being odd. First, if n is even and \(t>\frac{n}{2}\), then \(t=\frac{n}{2}+1\) only. Dividing by \(2^{2t}\), the first equation of (8) becomes \(A_1^2 + B_1^2 + C_1^2 + D_1^2 + W_1^2 + X_1^2 + Y_1^2 + Z_1^2=2\), which gives the solution \((\pm 1,\pm 1,0,0,0,0,0,0)\) (and permutations of these values). However, a simple computation reveals that none of these possibilities also satisfies the last three equations of (8). If n is odd and \(t>\frac{n+1}{2}\), then \(t=\frac{n+3}{2}\), but this implies that only one value out of \(A,B,\ldots \) is nonzero. Again, that is impossible to satisfy the last three equations of (8). Assume now that \(t<\frac{n}{2}\). The first equation of (8) becomes \(A_1^2 + B_1^2 + C_1^2 + D_1^2 + W_1^2 + X_1^2 + Y_1^2 + Z_1^2=2^{n+3-2t}\), which is divisible by \(2^5\) (when n is even, since \(t\le \frac{n-2}{2}\)), respectively \(2^4\) (when n is odd, since \(t\le \frac{n-1}{2}\)). If n is even, this can only happen if \(A_1,B_1,\ldots ,\) are all even, that is, \(\equiv 0,2,4,6\pmod 8\), but that contradicts our assumption that t is the largest power of 2 dividing \(A,B,\ldots \). If n is odd and \(t\le \frac{n-3}{2}\), the previous argument would work, and if \(t=\frac{n-1}{2}\), then \(A_1^2 + B_1^2 + C_1^2 + D_1^2 + W_1^2 + X_1^2 + Y_1^2 + Z_1^2=16\). By considering every residues for \(A_1,B_1,\ldots ,\) modulo 4 and imposing the condition that the 2nd, 3rd, 4th equations of our system also must be 0 modulo 16, we only get possibilities (0, 0, 2, 2, 0, 0, 2, 2), (0, 2, 0, 2, 0, 2, 0, 2), (0, 2, 2, 0, 0, 2, 2, 0), (2, 0, 0, 2, 2, 0, 0, 2), (2, 0, 2, 0, 2, 0, 2, 0), (2, 2, 0, 0, 2, 2, 0, 0) for \((A_1,B_1,\ldots )\) modulo 4, but that implies that all \(A_1,B_1,\ldots \) are even, contradicting our assumption on t. This shows that the only possibility is \(2^t = 2^{n/2}\) if n is even, and \(2^t = 2^{(n+1)/2}\) if n is odd.

Thus, one needs to find integer solutions for the equation \(A_1^2 + B_1^2 + C_1^2 + D_1^2 + {\mathcal W}_1^2 + X_1^2 + Y_1^2 + Z_1^2=8\), for n even, or \(A_1^2 + B_1^2 + C_1^2 + D_1^2 + {\mathcal W}_1^2 + X_1^2 + Y_1^2 + Z_1^2=4\) for n odd, which also satisfy the last three equations in (8). Mathematica renders the following: if n is even, then \(2^{-\frac{n}{2}}(A, C, D, W, B, X, Y, Z)\) (note the order) is one of

$$\begin{aligned} \nonumber&\pm (-1, -1, -1, -1, -1, -1, -1, -1),&\pm (-1, 1, -1, 1, -1, 1, -1, 1), \\ \nonumber&\pm (-1, -1, -1, -1, 1, 1, 1, 1),&\pm (-1, 1, -1, 1, 1, -1, 1, -1), \\&\pm (1, -1, -1, 1, -1, 1, 1, -1),&\pm (1, 1, -1, -1, -1, -1, 1, 1), \\ \nonumber&\pm (1, -1, -1, 1, 1, -1, -1, 1),&\pm (1, 1, -1, -1, 1, 1, -1, -1), \end{aligned}$$
(9)

and, if n is odd, then \(2^{-\frac{n+1}{2}}(A, C, D, W, B, X, Y, Z)\) is one of

$$\begin{aligned}&\pm (-1, 1, 0, 0, -1, 1, 0, 0),&\pm (-1, 1, 0, 0, 1, -1, 0, 0),\\&\pm (0, 0, -1, 1, 0, 0, -1, 1),&\pm (0, 0, -1, 1, 0, 0, 1, -1), \\&\pm (0, 0, 1, 1, 0, 0, -1, -1),&\pm (0, 0, 1, 1, 0, 0, 1, 1), \\&\pm (1, 1, 0, 0, -1, -1, 0, 0),&\pm (1, 1, 0, 0, 1, 1, 0, 0). \end{aligned}$$

We see that in both cases, if f is gbent, then the conditions of the theorem are satisfied. The converse follows with straightforward calculations.    \(\Box \)

Proof of Theorem 5 : Assume that f is gsemibent in \(\mathcal {GB}_n^{16}\) when n is odd, respectively generalized 2-plateaued when n is even. Then \(|{\mathcal H}_f^{(16)}(\mathbf{u})|\in \{0,\pm 2^{(n+1)/2}\}\) for n odd, respectively, \(|{\mathcal H}_f^{(16)}(\mathbf{u})|\in \{0,\pm 2^{(n+2)/2}\}\) for n even. Using the notations of Theorem 4, from Eq. (7), we immediately get \(A=B=C=D=X=Y=W=Z=0\) if \({\mathcal H}_f^{(16)}(\mathbf{u})=0\). If \(|{\mathcal H}_f^{(16)}(\mathbf{u})|=2^{(n+1)/2}\) (for n odd), respectively, \(|{\mathcal H}_f^{(16)}(\mathbf{u})|=2^{(n+2)/2}\) (for n even), then (7) again yields the system of Eq. (8) with the one difference that in the first equation the power of 2 on the right side is \(2^{n+4}\), respectively, \(2^{n+5}\). With the same argument as in the proof of Theorem 4 we see that for such \(\mathbf{u}\), \(2^{-\frac{n+1}{2}} (A, C, D, W, B, X, Y, Z)\) (for n odd), respectively, \(2^{-\frac{n+2}{2}} (A, C, D, W, B, X, Y, Z)\) (for n even) can only take the values from Eq. (9).

Straightforwardly, one confirms that the converse is also true, and the theorem is shown.    \(\Box \)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Martinsen, T., Meidl, W., Stănică, P. (2016). Generalized Bent Functions and Their Gray Images. In: Duquesne, S., Petkova-Nikova, S. (eds) Arithmetic of Finite Fields. WAIFI 2016. Lecture Notes in Computer Science(), vol 10064. Springer, Cham. https://doi.org/10.1007/978-3-319-55227-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55227-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55226-2

  • Online ISBN: 978-3-319-55227-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics