Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stochastic Integration Filter with Improved State Estimate Mean-Square Error Computation

  • Chapter
  • First Online:
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 430))

Abstract

The paper deals with the Bayesian state estimation of nonlinear stochastic dynamic systems. The focus is aimed at the stochastic integration filter, which represents the Gaussian filters with the state and measurement prediction moments calculated by the stochastic integration rule. Besides the value of the integral, the rule also provides the covariance matrix of the integral value error. In the paper an improved mean-square error of the state estimate is proposed based on utilization of the integral error covariance matrix. The improved calculation is illustrated using two numerical examples for the stochastic integration filter of the third and fifth degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that even though the optimization methods and the GFs were derived by different approaches and assumptions, finally they provide formally same structure of the algorithm, which is computationally reasonable and often used in practice.

  2. 2.

    For the sake of simplicity all PDFs will be given by their argument, if not stated otherwise, i.e., \( p(\mathbf w_k) = p_{\mathbf w_k}(\mathbf w_k) \).

  3. 3.

    For example, the Cholesky decomposition can be used.

  4. 4.

    Note that the Algorithm 1 computes approximate value of the integral for given vector functions \( \varvec{\gamma }\), but Algorithm 2 requires calculation of the predictive CMs (24), (25), and (27) for given matrix function. This can be resolved by column-wise stacking of matrix functions to obtain a vector function.

  5. 5.

    Note that \( I_{2} \) denotes \( 2\times 2 \) identity matrix.

References

  1. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice Hall, New Jersey (1979)

    MATH  Google Scholar 

  2. Arasaratnam, I., Haykin, S.: Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arasaratnam, I., Haykin, S., Elliott, R.J.: Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proc. IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  4. Bhaumik, S., et al.: Cubature quadrature Kalman filter. IET Signal Process. 7(7), 533–541 (2013)

    Article  MathSciNet  Google Scholar 

  5. Doucet, A., De Freitas, N., Gordon, N.: An introduction to sequential Monte Carlo methods. Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)

    Chapter  Google Scholar 

  6. Duník, J., Straka, O., Šimandl, M.: Stochastic integration filter. IEEE Trans. Autom. Control 58(6), 1561–1566 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Genz, A., Monahan, J.: Stochastic integration rules for infinite regions. SIAM J. Sci. Comput. 19(2), 426–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Havlík, J., Straka, O., Duník, J., Ajgl, J.: On nonlinearity measuring aspects of stochastic integration filter. In: Proceedings of the 13th International Conference on Informatics in Control, Automation and Robotics. Lisbon, Portugal (2016)

    Google Scholar 

  9. Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jia, B., Xin, M., Cheng, Y.: Sparse-grid quadrature nonlinear filtering. Automatica 48(2), 327–341 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. IEEE Rev. 92(3), 401–421 (2004)

    Article  Google Scholar 

  12. Kramer, S.C., Sorenson, H.W.: Recursive Bayesian estimation using piece-wise constant approximations. Automatica 24(6), 789–801 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nørgaard, M., Poulsen, N.K., Ravn, O.: New developments in state estimation for nonlinear systems. Automatica 36(11), 1627–1638 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman filter: Particle filters for tracking applications. Artech House (2004)

    Google Scholar 

  15. Sorenson, H.W.: On the development of practical nonlinear filters. Inf. Sci. 7, 230–270 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation, project no. GA 16-19999J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindřich Havlík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Havlík, J., Straka, O., Duník, J., Ajgl, J. (2018). Stochastic Integration Filter with Improved State Estimate Mean-Square Error Computation. In: Madani, K., Peaucelle, D., Gusikhin, O. (eds) Informatics in Control, Automation and Robotics . Lecture Notes in Electrical Engineering, vol 430. Springer, Cham. https://doi.org/10.1007/978-3-319-55011-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55011-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55010-7

  • Online ISBN: 978-3-319-55011-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics