Nothing Special   »   [go: up one dir, main page]

Skip to main content

Constructing Isogenies on Extended Jacobi Quartic Curves

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10143))

Included in the following conference series:

  • 1318 Accesses

Abstract

Isogenies are widely used in elliptic curves. Since Moody and Shumow [20] proposed isogenies on Edwards and Huff curves analogues of Vélu’s formulas, they have pointed out a new way to construct isogenies. However, hardly any isogeny on Jacobi quartic curves has been designed, this paper extends their work to construct isogenies on extended Jacobi quartic curves for the first time including a 2-isogeny and a generalized l-isogeny for any odd l as well as an improved l-isogeny. This paper also estimates the time complexity of the improved l-isogeny. If the constants are carefully chosen, the Jacobi quartic isogeny is about to catch up with Huff isogeny.

This work is supported in part by National Research Foundation of China under Grant No. 61502487, 61272040, and in part by National Basic Research Program of China (973) under Grant No. 2013CB338001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). doi:10.1007/3-540-39799-X_31

    Google Scholar 

  3. Brier, E., Joye, M.: Fast point multiplication on elliptic curves through isogenies. In: Fossorier, M., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 43–50. Springer, Heidelberg (2003). doi:10.1007/3-540-44828-4_6

    Chapter  Google Scholar 

  4. Tate, J.: Endomorphisms of abelian varieties over finite field. Ivent. Math. 2(2), 134–144 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schoof, R.: Elliptic curves over finite field and the computation of square roots mod p. Math. Comp. 44(170), 483–494 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Galbraith, S.D.: Constructing isogenies between elliptic curves over finite fields. J. Comput. Math. 2, 118–138 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil descent on elliptic curves. J. Cryptology 15(1), 19–46 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Galbraith, S., Stolbunov, A.: Improved algorithm for the isogeny problem for ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput. 24(2), 107–131 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isogenies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014). doi:10.1007/978-3-319-13039-2_25

    Google Scholar 

  10. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5_2

    Chapter  Google Scholar 

  11. Billet, O., Joye, M.: The jacobi model of an elliptic curve and side-channel analysis. In: Fossorier, M., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003). doi:10.1007/3-540-44828-4_5

    Chapter  Google Scholar 

  12. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Jacobi quartic curves revisited. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02620-1_31

    Chapter  Google Scholar 

  13. Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi model. Inf. Process. Lett. 104(3), 101–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve arithmetic. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 138–151. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77026-8_11

    Chapter  Google Scholar 

  15. Hisil, H., Wong, K.K.H., Carter, G., Dawson, E.: Faster group operations on elliptic curves. AISC 2009, vol. 98, pp. 7–20 (2009)

    Google Scholar 

  16. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9_30

    Chapter  Google Scholar 

  17. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_11

    Chapter  Google Scholar 

  18. Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny decompositions. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 191–206. Springer, Heidelberg (2006). doi:10.1007/11745853_13

    Chapter  Google Scholar 

  19. Moody, D.: Using 5-isogenies to quintuple points on elliptic curves. Inf. Process. Lett. 111, 314–317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moody, D., Shumow, D.: Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves. Math. Comp. 85(300), 1929–1951 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vélu, J.: Isogénied entre courbes elliptiques. C.R. Acad. Sc. Paris Série A. 273, 238–241 (1971)

    Google Scholar 

  22. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California at Berkeley (1996)

    Google Scholar 

  23. Hisil, H.: Elliptic curves, group law, and efficient computation. PhD thesis, Queensland University of Technology (2010)

    Google Scholar 

  24. Moody, D.: Divison polynomials for alternate models of elliptic curves. IACR Cryptology ePrint Archive 2010, 630 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, X., Yu, W., Wang, K., He, X. (2017). Constructing Isogenies on Extended Jacobi Quartic Curves. In: Chen, K., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2016. Lecture Notes in Computer Science(), vol 10143. Springer, Cham. https://doi.org/10.1007/978-3-319-54705-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54705-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54704-6

  • Online ISBN: 978-3-319-54705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics