Abstract
Clouds are a reality both in commercial and scientific domains. It is a fact that clouds are not only an IT outsourcing, but an opportunity to foster the development of complex scientific applications over distributed resources in several domains from bioinformatics to astronomy. Although clouds provide several advantages such as elasticity and a pay-as-you-go model, such characteristics come at a price. One important drawback of clouds is how do estimate the amount of resources to deploy. Depending on the type of application, it may be not simple to estimate the necessary amount of resources. This complexity may lead to over- or under-dimensioning, which are not desired. This chapter addresses the problem of dimensioning the amount of virtual machines (VMs) in clouds for executing high performance computing (HPC) scientific applications. The aim of this chapter is to present existing approaches that estimate in a static or dynamic way the amount of VMs for several types of applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. citeseer.nj.nec.com/akutsu99identification.html
Alvares de Oliveira F, Sharrock R, Ledoux T (2012) Synchronization of multiple autonomic control loops: application to cloud computing. In: Proceedings of the 14th international conference on coordination models and languages, COORDINATION 2012. Springer, Berlin/Heidelberg, pp 29–43
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10(1):154. doi: 10.1186/1471-2105-10-154, http://www.biomedcentral.com/1471-2105/10/154
Buyya R, Ranjan R, Calheiros R (2010) InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. In: Hsu CH, Yang L, Park J, Yeo SS (eds) Algorithms and architectures for parallel processing. Lecture notes in computer science, vol 6081. Springer, Berlin/Heidelberg, pp 13–31
Chaisiri S, Lee BS, Niyato D (2012) Optimization of resource provisioning cost in cloud computing. IEEE Trans Serv Comput 5(2):164–177
Chard R, Chard K, Bubendorfer K, Lacinski L, Madduri R, Foster I (2015) Cost-aware elastic cloud provisioning for scientific workloads. In: 2015 IEEE 8th international conference on cloud computing (CLOUD), pp 971–974
Collela P (2004) Defining software requirements for scientific computing. In: DARPA reports, pp 315–320
Coutinho R, Drummond L, Frota Y (2014) Optimization of a cloud resource management problem from a consumer perspective. In: Euro-Par 2013: parallel processing workshops. Lecture notes in computer science, vol 8374. Springer, Berlin/Heidelberg, pp 218–227
Coutinho R, Drummond L, Frota Y, de Oliveira D, Ocaña K (2014) Evaluating grasp-based cloud dimensioning for comparative genomics: a practical approach. In: IEEE international conference on cluster computing (CLUSTER), pp 371–379
Coutinho R, Drummond L, Frota Y, de Oliveira D (2015) Optimizing virtual machine allocation for parallel scientific workflows in federated clouds. Future Gener Comput Syst 46(0):51–68
Coutinho R, Frota Y, Ocaña K, de Oliveira D, Drummond LMA (2016) A dynamic cloud dimensioning approach for parallel scientific workflows: a case study in the comparative genomics domain. J Grid Comput 1–19
Crawl D, Wang J, Altintas I (2011) Provenance for MapReduce-based data-intensive workflows. In: Proceedings of the 6th workshop on workflows in support of large-scale science, WORKS ’11. ACM, New York, pp 21–30
Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on symposium on opearting systems design & implementation, OSDI’04, vol 6. USENIX Association, Berkeley, pp 10–10
Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman GB, Good J, Laity AC, Jacob JC, Katz DS (2005) Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci Program 13(3):219–237
Deng K, Song J, Ren K, Iosup A (2013) Exploring portfolio scheduling forlong-term execution of scientific workloads in IaaS clouds. In: Proceedings of SC13: international conference for high performance computing, networking, storage and analysis, SC ’13. ACM, New York, pp 55:1–55:12
de Oliveira D, Ogasawara E, Baião F, Mattoso M: Scicumulus: a lightweight cloud middleware to explore many task computing paradigm in scientific workflows. In: 3rd international conference on cloud computing (2010), pp 378–385
de Oliveira D, Ocaña KA, Ogasawara E, Dias J, Gonçalves J, Baião F, Mattoso M (2013) Performance evaluation of parallel strategies in public clouds: a study with phylogenomic workflows. Future Gener Comput Syst 29(7):1816–1825
de Oliveira D, Viana V, Ogasawara E, Ocaña K, Mattoso M (2013) Dimensioning the virtual cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM workshop on scientific cloud computing, science cloud ’13. ACM, New York, pp 5–12
Emeakaroha V, Maurer M, Stern P, Łabaj P, Brandic I, Kreil D (2013) Managing and optimizing bioinformatics workflows for data analysis in clouds. J Grid Comput 11(3):407–428
Endo PT, de Almeida Palhares AV, Pereira NN, Goncalves GE, Sadok D, Kelner J, Melander B, Mangs J (2011) Resource allocation for distributed cloud: concepts and research challenges. IEEE Network 25(4):42–46
Engen V, Papay J, Phillips SC, Boniface M (2012) Predicting application performance for multi-vendor clouds using dwarf benchmarks. In: Proceedings of the 13th international conference on web information systems engineering, WISE’12. Springer, Berlin/Heidelberg, pp 659–665. doi: 10.1007/978-3-642-35063-4_50, http://dx.doi.org/10.1007/978-3-642-35063-4_50
Fadika Z, Dede E, Hartog J, Govindaraju M (2012) Marla: mapreduce for heterogeneous clusters. In: Proceedings of the 2012 12th IEEE/ACM international symposium on cluster, cloud and grid computing (Ccgrid 2012), CCGRID ’12. IEEE Computer Society, Washington, DC, pp 49–56. doi: 10.1109/CCGrid.2012.135, http://dx.doi.org/10.1109/CCGrid.2012.135
Feng H, Misra V, Rubenstein D (2007) Pbs: a unified priority-based scheduler. In: Proceedings of the 2007 ACM SIGMETRICS international conference on measurement and modeling of computer systems, SIGMETRICS ’07. ACM, New York, pp 203–214. doi: 10.1145/1254882.1254906, http://doi.acm.org/10.1145/1254882.1254906
Foster I, Kesselman C (2003) The grid 2: blueprint for a new computing infrastructure. The Elsevier series in grid computing, 2nd edn. Morgan Kaufmann, San Francisco
Freire J, Koop D, Santos E, Silva CT (2008) Provenance for computational tasks: a survey. Comput Sci Eng 10(3):11–21
Habib I (2006) Getting started with condor. Linux J 2006(149):2–. http://dl.acm.org/citation.cfm?id=1152899.1152901
Heilig L, Lalla-Ruiz E, Voß S (2016) A cloud brokerage approach for solving the resource management problem in multi-cloud environments. Comput Ind Eng 95:16–26
Hey T, Tansley S, Tolle K (eds) (2009): The fourth paradigm: data-intensive scientific discovery. Microsoft Research, Redmond
ILOG SA (2008) Cplex 11 user’s manual
Jackson KR, Ramakrishnan L, Runge KJ, Thomas RC (2010) Seeking supernovae in the clouds: a performance study. In: Proceedings of the 19th ACM international symposium on high performance distributed computing, HPDC ’10. ACM, New York, pp 421–429
Jamshidi P, Ahmad A, Pahl C (2013) Cloud migration research: a systematic review. IEEE Trans Cloud Comput 1(2):142–157. doi: 10.1109/TCC.2013.10
Joshi SB (2012) Apache hadoop performance-tuning methodologies and best practices. In: Proceedings of the 3rd ACM/SPEC international conference on performance engineering, ICPE ’12. ACM, New York, pp 241–242. doi: 10.1145/2188286.2188323, http://doi.acm.org/10.1145/2188286.2188323
Juve G, Deelman E (2010) Scientific workflows and clouds. Crossroads 16(3):14–18. doi: 10.1145/1734160.1734166, http://doi.acm.org/10.1145/1734160.1734166
Kitchenham B, Brereton P, Turner M, Niazi M, Linkman S, Pretorius R, Budgen D (2009) The impact of limited search procedures for systematic literature reviews #x2014; a participant-observer case study. In: 2009 3rd international symposium on empirical software engineering and measurement, pp 336–345. doi: 10.1109/ESEM.2009.5314238
Lama P, Zhou X (2012) AROMA: automated resource allocation and configuration of MapReduce environment in the cloud. In: Proceedings of the 9th international conference on autonomic computing, ICAC ’12. ACM, New York, pp 63–72
Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V (2012) Armadillo 1.1: an original workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS ONE 7(1):e29903. doi: 10.1371/journal.pone.0029903, http://dx.plos.org/10.1371/journal.pone.0029903
Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones MB, Lee EA, Tao J, Zhao Y (2006) Scientific workflow management and the Kepler system. Concurr Comput: Pract Exp 18(10):1039–1065. doi: 10.1002/cpe.994, http://dx.doi.org/10.1002/cpe.994
Maheshwari K, Jung ES, Meng J, Morozov V, Vishwanath V, Kettimuthu R (2016) Workflow performance improvement using model-based scheduling over multiple clusters and clouds. Future Gener Comput Syst 54:206–218
Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms for cost- and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds. Future Gener Comput Syst 48:1–18. Special Section: Business and Industry Specific Cloud
Manfroi LF, Ferro M, Yokoyama AM, Mury AR, Schulze B (2013) A walking dwarf on the clouds. In: 2013 IEEE/ACM 6th international conference on utility and cloud computing (UCC), pp 399–404. doi: 10.1109/UCC.2013.80
Matsunaga A, Tsugawa M, Fortes J (2008) Cloudblast: combining mapreduce and virtualization on distributed resources for bioinformatics applications. In: IEEE fourth international conference on eScience, eScience ’08, pp 222–229. doi: 10.1109/eScience.2008.62
Mattoso M, Werner C, Travassos GH, Braganholo V, Ogasawara E, Oliveira DD, Cruz SM, Martinho W, Murta L (2010) Towards supporting the life cycle of large scale scientific experiments. Int J Bus Process Integr Manag 5(1):79+
Moustafa A, Bhattacharya D, Allen AE (2010) iTree: a high-throughput phylogenomic pipeline. IEEE, Cairo, pp 103–107. doi: 10.1109/CIBEC.2010.5716071, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5716071
Nguyen P, Halem M (2011) A MapReduce workflow system for architecting scientific data intensive applications. In: Proceedings of the 2nd international workshop on software engineering for cloud computing, SECLOUD ’11. ACM, New York, pp 57–63
Niemenmaa M, Kallio A, Schumacher A, Klemela P, Korpelainen E, Heljanko K (2012) Hadoop-BAM: directly manipulating next generation sequencing data in the cloud. Bioinformatics 28(6):876–877. doi: 10.1093/bioinformatics/bts054, http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/bts054
Ocaña K, de Oliveira D, Ogasawara ES, Dávila AMR, Lima AAB, Mattoso M (2011) SciPhy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In: de Souza ON, Telles GP, Palakal MJ (eds) BSB. Lecture notes in computer science, vol 6832. Springer, pp 66–70
Paranjape K, Hebert S, Masson B (2012) Heterogeneous computing in the cloud: crunching big data and democratizing HPC access for the life sciences. Technical report, Intel Corporation
Phillips SC, Engen V, Papay J (2011) Snow white clouds and the seven dwarfs. In: 2011 IEEE third international conference on cloud computing technology and science (CloudCom), pp 738–745 doi: 10.1109/CloudCom.2011.114
Prodan R, Wieczorek M, Fard H (2011) Double auction-based scheduling of scientific applications in distributed grid and cloud environments. J Grid Comput 9(4):531–548
Rodero I, Viswanathan H, Lee EK, Gamell M, Pompili D, Parashar M (2012) Energy-efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure. J Grid Comput 10(3):447–473
Severin J, Beal K, Vilella AJ, Fitzgerald S, Schuster M, Gordon L, Ureta-Vidal A, Flicek P, Herrero J (2010) eHive: an artificial intelligence workflow system for genomic analysis. BMC Bioinform 11(1):240. doi: 10.1186/1471-2105-11-240, http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-240
Shanahan JG, Dai L (2015) Large scale distributed data science using apache spark. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’15. ACM, New York, pp 2323–2324 doi: 10.1145/2783258.2789993, http://doi.acm.org/10.1145/2783258.2789993
Shen Z, Subbiah S, Gu X, Wilkes J (2011) Cloudscale: elastic resource scaling for multi-tenant cloud systems. In: Proceedings of the 2nd ACM symposium on cloud computing, SOCC ’11. ACM, New York, pp 5:1–5:14
Singh A, Chen C, Liu W, Mitchell W, Schmidt B: A hybrid computational grid architecture for comparative genomics. IEEE Trans Inf Technol Biomed 12(2):218–225 (2008). doi: 10.1109/TITB.2007.908462, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4358919
Szabo C, Sheng Q, Kroeger T, Zhang Y, Yu J (2014) Science in the cloud: allocation and execution of data-intensive scientific workflows. J Grid Comput 12(2):245–264
Taylor IJ, Deelman E, Gannon DB (2007) Workflows for e-science: scientific workflows for grids. Springer, London
Tian W (2009) adaptive dimensioning of cloud data centers. In: Proceedings of the 8th international conference on dependable, autonomic and secure computing, DASC ’09. IEEE Computer Society, Washington, pp 5–10
Vaquero LM, Rodero-Merino L, Caceres J, Lindner M (2008) A break in the clouds: towards a cloud definition. SIGCOMM Comput Commun Rev 39(1):50–55
Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ (2010) Cloud computing for comparative genomics. BMC Bioinform 11(1):259. doi: 10.1186/1471-2105-11-259, http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-259
Wang J, Crawl D, Altintas I (2009) Kepler + Hadoop: a general architecture facilitating data-intensive applications in scientific workflow systems. In: Proceedings of the 4th workshop on workflows in support of large-scale science, WORKS ’09. ACM, New York, pp 12:1–12:8
Wolstencroft K, Haines R, Fellows D, Williams AR, Withers D, Owen S, Soiland-Reyes S, Dunlop I, Nenadic A, Fisher P, Bhagat J, Belhajjame K, Bacall F, Hardisty A, de la Hidalga AN, Vargas MPB, Sufi S, Goble CA (2013) The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res 41(Webserver-Issue):557–561. doi: 10.1093/nar/gkt328, http://dx.doi.org/10.1093/nar/gkt328
Wozniak JM, Armstrong TG, Maheshwari K, Lusk EL, Katz DS, Wilde M, Foster IT (2013) Turbine: a distributed memory dataflow engine for high performance many-task applications. Fundamenta Informaticae Journal 128(3):337–366
Xiao Z, Song W, Chen Q (2013) dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107–1117
Xu L, Zeng Z, Ye X (2012) Multi-objective optimization based virtual resource allocation strategy for cloud computing. In: Proceedings of the 11th international conference on computer and information science, ICIS ’12. IEEE Computer Society, Washington, DC, pp 56–61
Acknowledgements
Authors would like to thank CNPq and FAPERJ for partially sponsoring this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Coutinho, R., Frota, Y., Ocaña, K., de Oliveira, D., Drummond, L.M.A. (2017). Mirror Mirror on the Wall, How Do I Dimension My Cloud After All?. In: Antonopoulos, N., Gillam, L. (eds) Cloud Computing. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-54645-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-54645-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54644-5
Online ISBN: 978-3-319-54645-2
eBook Packages: Computer ScienceComputer Science (R0)