Abstract
It is well known that automatic lip-reading (ALR), also known as visual speech recognition (VSR), enhances the performance of speech recognition in a noisy environment and also has applications itself. However, ALR is a challenging task due to various lip shapes and ambiguity of visemes (the basic unit of visual speech information). In this paper, we tackle ALR as a classification task using end-to-end neural network based on convolutional neural network and long short-term memory architecture. We conduct single, cross, and multi-view experiments in speaker independent setting with various network configuration to integrate the multi-view data. We achieve 77.9%, 83.8%, and 78.6% classification accuracies in average on single, cross, and multi-view respectively. This result is better than the best score (76%) of preliminary single-view results given by ACCV 2016 workshop on multi-view lip-reading/audio-visual challenges. It also shows that additional view information helps to improve the performance of ALR with neural network architecture.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The Center of Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Finland.
- 3.
- 4.
- 5.
References
McGurk, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264, 746–748 (1976)
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of 28th International Conference on Machine Learning (ICML-2011), pp. 689–696 (2011)
Potamianos, G., Neti, C.: Audio-visual speech recognition in challenging environments. In: INTERSPEECH (2003)
Anina, I., Zhou, Z., Zhao, G., Pietikäinen, M.: Ouluvs2: a multi-view audiovisual database for non-rigid mouth motion analysis. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–5. IEEE (2015)
Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Trans. Pattern Analysis Mach. Intell. 23, 681–685 (2001)
Zhao, G., Barnard, M., Pietikainen, M.: Lipreading with local spatiotemporal descriptors. IEEE Trans. Multimedia 11, 1254–1265 (2009)
Shaikh, A.A., Kumar, D.K., Yau, W.C., Azemin, M.C., Gubbi, J.: Lip reading using optical flow and support vector machines. In: 2010 3rd International Congress on Image and Signal Processing (CISP), vol. 1, pp. 327–330. IEEE (2010)
Bregler, C., Konig, Y.: Eigenlips for robust speech recognition. In: 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-1994, vol. 2, p. II-669. IEEE (1994)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)
Rekik, A., Ben-Hamadou, A., Mahdi, W.: A new visual speech recognition approach for RGB-D cameras. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8815, pp. 21–28. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11755-3_3
Pass, A., Zhang, J., Stewart, D.: An investigation into features for multi-view lipreading. In: 2010 IEEE International Conference on Image Processing, pp. 2417–2420. IEEE (2010)
Wand, M., Koutn, J., et al.: Lipreading with long short-term memory. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6115–6119. IEEE (2016)
Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)
Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks (2014). arXiv preprint arXiv:1412.4729
Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., Courville, A.: Describing videos by exploiting temporal structure. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4507–4515 (2015)
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471 (2000)
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Warde-Farley, D., Bengio, Y.: Theano: new features and speed improvements (2012). arXiv preprint arXiv:1211.5590
Potamianos, G., Neti, C., Gravier, G., Garg, A., Senior, A.W.: Recent advances in the automatic recognition of audiovisual speech. Proc. IEEE 91, 1306–1326 (2003)
Zhou, Z., Hong, X., Zhao, G., Pietikäinen, M.: A compact representation of visual speech data using latent variables. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1–1 (2014)
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. ICML (1) 28, 115–123 (2013)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980
Chollet, F.: Keras (2015). https://github.com/fchollet/keras
Acknowledgement
This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0101-16-0307, Basic Software Research in Human-level Lifelong Machine Learning (Machine Learning Center)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Lee, D., Lee, J., Kim, KE. (2017). Multi-view Automatic Lip-Reading Using Neural Network. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-54427-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54426-7
Online ISBN: 978-3-319-54427-4
eBook Packages: Computer ScienceComputer Science (R0)