Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-view Automatic Lip-Reading Using Neural Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10117))

Included in the following conference series:

Abstract

It is well known that automatic lip-reading (ALR), also known as visual speech recognition (VSR), enhances the performance of speech recognition in a noisy environment and also has applications itself. However, ALR is a challenging task due to various lip shapes and ambiguity of visemes (the basic unit of visual speech information). In this paper, we tackle ALR as a classification task using end-to-end neural network based on convolutional neural network and long short-term memory architecture. We conduct single, cross, and multi-view experiments in speaker independent setting with various network configuration to integrate the multi-view data. We achieve 77.9%, 83.8%, and 78.6% classification accuracies in average on single, cross, and multi-view respectively. This result is better than the best score (76%) of preliminary single-view results given by ACCV 2016 workshop on multi-view lip-reading/audio-visual challenges. It also shows that additional view information helps to improve the performance of ALR with neural network architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://ouluvs2.cse.oulu.fi/ACCVW.html.

  2. 2.

    The Center of Machine Vision Research, Department of Computer Science and Engineering, University of Oulu, Finland.

  3. 3.

    http://ouluvs2.cse.oulu.fi/preliminary.html.

  4. 4.

    https://ffmpeg.org/about.html.

  5. 5.

    http://ouluvs2.cse.oulu.fi/preliminary.html.

References

  1. McGurk, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264, 746–748 (1976)

    Article  Google Scholar 

  2. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of 28th International Conference on Machine Learning (ICML-2011), pp. 689–696 (2011)

    Google Scholar 

  3. Potamianos, G., Neti, C.: Audio-visual speech recognition in challenging environments. In: INTERSPEECH (2003)

    Google Scholar 

  4. Anina, I., Zhou, Z., Zhao, G., Pietikäinen, M.: Ouluvs2: a multi-view audiovisual database for non-rigid mouth motion analysis. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–5. IEEE (2015)

    Google Scholar 

  5. Cootes, T.F., Edwards, G.J., Taylor, C.J., et al.: Active appearance models. IEEE Trans. Pattern Analysis Mach. Intell. 23, 681–685 (2001)

    Article  Google Scholar 

  6. Zhao, G., Barnard, M., Pietikainen, M.: Lipreading with local spatiotemporal descriptors. IEEE Trans. Multimedia 11, 1254–1265 (2009)

    Article  Google Scholar 

  7. Shaikh, A.A., Kumar, D.K., Yau, W.C., Azemin, M.C., Gubbi, J.: Lip reading using optical flow and support vector machines. In: 2010 3rd International Congress on Image and Signal Processing (CISP), vol. 1, pp. 327–330. IEEE (2010)

    Google Scholar 

  8. Bregler, C., Konig, Y.: Eigenlips for robust speech recognition. In: 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-1994, vol. 2, p. II-669. IEEE (1994)

    Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  10. Rekik, A., Ben-Hamadou, A., Mahdi, W.: A new visual speech recognition approach for RGB-D cameras. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8815, pp. 21–28. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11755-3_3

    Google Scholar 

  11. Pass, A., Zhang, J., Stewart, D.: An investigation into features for multi-view lipreading. In: 2010 IEEE International Conference on Image Processing, pp. 2417–2420. IEEE (2010)

    Google Scholar 

  12. Wand, M., Koutn, J., et al.: Lipreading with long short-term memory. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6115–6119. IEEE (2016)

    Google Scholar 

  13. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence to sequence-video to text. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4534–4542 (2015)

    Google Scholar 

  14. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating videos to natural language using deep recurrent neural networks (2014). arXiv preprint arXiv:1412.4729

  15. Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle, H., Courville, A.: Describing videos by exploiting temporal structure. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4507–4515 (2015)

    Google Scholar 

  16. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968)

    Article  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  18. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12, 2451–2471 (2000)

    Article  Google Scholar 

  19. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Warde-Farley, D., Bengio, Y.: Theano: new features and speed improvements (2012). arXiv preprint arXiv:1211.5590

  20. Potamianos, G., Neti, C., Gravier, G., Garg, A., Senior, A.W.: Recent advances in the automatic recognition of audiovisual speech. Proc. IEEE 91, 1306–1326 (2003)

    Article  Google Scholar 

  21. Zhou, Z., Hong, X., Zhao, G., Pietikäinen, M.: A compact representation of visual speech data using latent variables. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1–1 (2014)

    Article  Google Scholar 

  22. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. ICML (1) 28, 115–123 (2013)

    Google Scholar 

  24. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  25. Chollet, F.: Keras (2015). https://github.com/fchollet/keras

Download references

Acknowledgement

This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. B0101-16-0307, Basic Software Research in Human-level Lifelong Machine Learning (Machine Learning Center)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehyun Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lee, D., Lee, J., Kim, KE. (2017). Multi-view Automatic Lip-Reading Using Neural Network. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54427-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54426-7

  • Online ISBN: 978-3-319-54427-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics