Nothing Special   »   [go: up one dir, main page]

Skip to main content

DNA-SLAM: Dense Noise Aware SLAM for ToF RGB-D Cameras

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

Abstract

SLAM with RGB-D cameras is a very active field in Computer Vision as well as Robotics. Dense methods using all depth and intensity information showed best results in the past. However, usually they were developed and evaluated with RGB-D cameras using Pattern Projection like the Kinect v1 or Xtion Pro. Recently, Time-of-Flight (ToF) cameras like the Kinect v2 or Google Tango were released promising higher quality. While the overall accuracy increases for these ToF cameras, noisy pixels are introduced close to discontinuities, in the image corners and on dark/glossy surfaces. These inaccuracies need to be specially addressed for dense SLAM. Thus, we present a new Dense Noise Aware SLAM (DNA-SLAM), which considers explicitly the noise characteristics of ToF RGB-D cameras with a sophisticated weighting scheme. In a rigorous evaluation on public benchmarks we show the superior accuracy of our algorithm compared to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: International Conference on Computer Vision (ICCV), pp. 1403–1410. IEEE (2003)

    Google Scholar 

  2. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225–234. IEEE (2007)

    Google Scholar 

  3. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: Dense tracking and mapping in real-time. In: International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  4. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_54

    Google Scholar 

  5. Microsoft: (Kinect v2). www.microsoft.com/en-us/kinectforwindows/

  6. Google: (Tango). www.google.com/atap/project-tango/

  7. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3D visual slam with a hand-held RGB-D camera. In: RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, vol. 180 (2011)

    Google Scholar 

  8. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR), vol. 2 (2011)

    Google Scholar 

  9. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3748–3754. IEEE (2013)

    Google Scholar 

  10. Gutierrez-Gomez, D., Mayol-Cuevas, W., Guerrero, J.: Dense RGB-D visual odometry using inverse depth. Robot. Auton. Syst. 75, 571–583 (2016)

    Article  Google Scholar 

  11. Brunetto, N., Fioraio, N., Stefano, L.: Interactive RGB-D SLAM on mobile devices. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9010, pp. 339–351. Springer, Cham (2015). doi:10.1007/978-3-319-16634-6_25

    Google Scholar 

  12. Belter, D., Nowicki, M., Skrzypczyński, P.: On the performance of pose-based RGB-D visual navigation systems. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 407–423. Springer, Cham (2015). doi:10.1007/978-3-319-16808-1_28

    Google Scholar 

  13. Ma, L., Kerl, C., Stueckler, J., Cremers, D.: CPA-SLAM: consistent plane-model alignment for direct RGB-D slam. In: International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  14. Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: International Conference on Robotics and Automation (ICRA), pp. 5724–5731. IEEE (2013)

    Google Scholar 

  15. Steinbruecker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: International Conference on Computer Vision Workshop (ICCV Workshop) (2011)

    Google Scholar 

  16. Audras, C., Comport, A., Meilland, M., Rives, P.: Real-time dense appearance-based slam for RGB-D sensors. In: Australasian Conference on Robotics and Automation (ACRA) (2011)

    Google Scholar 

  17. Klose, S., Heise, P., Knoll, A.: Efficient compositional approaches for real-time robust direct visual odometry from RGB-D data. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1100–1106. IEEE (2013)

    Google Scholar 

  18. Kerl, C., Sturm, J., Cremers, D.: Dense visual slam for RGB-D cameras. In: International Conference on Intelligent Robot Systems (IROS) (2013)

    Google Scholar 

  19. Meilland, M., Comport, A.I.: On unifying key-frame and voxel-based dense visual slam at large scales. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3677–3683. IEEE (2013)

    Google Scholar 

  20. Kerl, C., Stueckler, J., Cremers, D.: (Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras)

    Google Scholar 

  21. Wasenmüller, O., Stricker, D.: Comparison of kinect v1 and v2 depth images in terms of accuracy and precision. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016 Workshops, Part II. LNCS, vol. 10116, pp. 34–45. Springer, Cham (2017)

    Google Scholar 

  22. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-d vision: from images to geometric models, vol. 26. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  23. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: Robotics-DL Tentative, pp. 586–606. International Society for Optics and Photonics (1992)

    Google Scholar 

  24. Tykkälä, T., Audras, C., Comport, A.I.: Direct iterative closest point for real-time visual odometry. In: International Conference on Computer Vision Workshops (ICCV Workshops), pp. 2050–2056. IEEE (2011)

    Google Scholar 

  25. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 573–580. IEEE (2012)

    Google Scholar 

  26. Wasenmüller, O., Meyer, M., Stricker, D.: CoRBS: comprehensive RGB-D benchmark for slam using kinect v2. In: IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE (2016)

    Google Scholar 

  27. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: IEEE International Conference on 3D Digital Imaging and Modeling, pp. 145–152. IEEE (2001)

    Google Scholar 

  28. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2011)

    Google Scholar 

  29. Lin, Y.C., Chen, C.Y., Huang, S.W., Huang, P.S., Chen, C.F.: Registration and merging of large scale range data using an improved ICP algorithm approach. In: International Conference Image and Vision Computing (IVCNZ) (2011)

    Google Scholar 

  30. Wasenmüller, O., Meyer, M., Stricker, D.: Augmented reality 3D discrepancy check in industrial applications. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 125–134. IEEE (2016)

    Google Scholar 

  31. Lee, D., Kim, H., Myung, H.: Gpu-based real-time RGB-D 3D slam. In: International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 46–48. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Wasenmüller .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 17268 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wasenmüller, O., Ansari, M.D., Stricker, D. (2017). DNA-SLAM: Dense Noise Aware SLAM for ToF RGB-D Cameras. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics