Nothing Special   »   [go: up one dir, main page]

Skip to main content

Face Detection and Object Recognition for a Retinal Prosthesis

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

Abstract

We describe the recent development of assistive computer vision algorithms for use with the Argus II retinal prosthesis system. While users of the prosthetic system can learn and adapt to the limited stimulation resolution, there exists great potential for computer vision algorithms to augment the experience and significantly increase the utility of the system for the user. To this end, our recent work has focused on helping with two different challenges encountered by the visually impaired: face detection and object recognition. In this paper, we describe algorithm implementations in both of these areas that make use of the retinal prosthesis for visual feedback to the user, and discuss the unique challenges faced in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The speech synthesis and recognition modules run asynchronously from the vision algorithm and their computational demands are minimal compared to the CNN detection/tracking portion.

References

  1. Black, A.W., Taylor, P.A.: The festival speech synthesis system: system documentation. Technical report HCRC/TR-83, Human Communciation Research Centre, University of Edinburgh, Scotland, UK (1997). http://www.cstr.ed.ac.uk/projects/festival.html

  2. Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000). http://code.opencv.org/projects/opencv/wiki/CiteOpenCV

  3. Burlina, P.: MR-CNN: a stateful fast R-CNN. In: International Conference on Pattern Recognition (2016)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. CoRR abs/1502.01852 (2015)

    Google Scholar 

  6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint (2014). arXiv:1408.5093

  7. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  8. Kang, K., Li, H., Yan, J., Zeng, X., Yang, B., Xiao, T., Zhang, C., Wang, Z., Wang, R., Wang, X., Ouyang, W.: T-CNN: tubelets with convolutional neural networks for object detection from videos. CoRR abs/1604.02532 (2016)

    Google Scholar 

  9. Kang, K., Ouyang, W., Li, H., Wang, X.: Object detection from video tubelets with convolutional neural networks. CoRR abs/1604.04053 (2016)

    Google Scholar 

  10. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning Multi-scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74549-5_87

    Chapter  Google Scholar 

  11. Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick, R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014)

    Google Scholar 

  12. Liu, W.: SSD Caffe (2015). https://github.com/weiliu89/caffe/tree/ssd

  13. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015)

    Google Scholar 

  14. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR abs/1506.02640 (2015)

    Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  16. Rollend, D., Rosendall, P., Wolfe, K., Kleissas, D., Billings, S., Oben, J., Helder, J., Tenore, F., Burlina, P., Roy, A., Greenberg, R., Katyal, K.: Embedded clutter reduction and face detection algorithms for a visual prosthesis. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), August 2016

    Google Scholar 

  17. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Google Scholar 

  18. Stanga, P., Sahel, J., Mohand-Said, S., daCruz, L., Caspi, A., Merlini, F., Greenberg, R.: Face detection using the argus II retinal prosthesis system. Invest. Ophthalmol. Vis. Sci. 54, 1766 (2013)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. I-511-I-518 (2001)

    Google Scholar 

  20. Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfel, J.: Sphinx-4: a flexible open source framework for speech recognition. Technical report, Mountain View, CA, USA (2004)

    Google Scholar 

Download references

Acknowledgement

This work was supported by an Alfred E. Mann collaboration grant. We would also like to thank Arup Roy, Avi Caspi, and Robert Greenberg, our collaborators from Second Sight Medical Products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Katyal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 23697 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rollend, D., Rosendall, P., Billings, S., Burlina, P., Wolfe, K., Katyal, K. (2017). Face Detection and Object Recognition for a Retinal Prosthesis. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics