Nothing Special   »   [go: up one dir, main page]

Skip to main content

ZigzagNet: Efficient Deep Learning for Real Object Recognition Based on 3D Models

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

  • 2131 Accesses

Abstract

Effective utilization on texture-less 3D models for deep learning is significant to recognition on real photos. We eliminate the reliance on massive real training data by modifying convolutional neural network in 3 aspects: synthetic data rendering for training data generation in large quantities, multi-triplet cost function modification for multi-task learning and compact micro architecture design for producing tiny parametric model while overcoming over-fit problem in texture-less models. Network is initiated with multi-triplet cost function establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to pose, lighting condition, background and category information of rendered images. Fine-tuning with additional data further meets the aim of classification on special real photos based on initial model. We propose a 6.2 MB compact parametric model called ZigzagNet based on SqueezeNet to improve the performance for recognition by applying moving normalization inside micro architecture and adding channel wise convolutional bypass through macro architecture. Moving batch normalization is used to get a good performance on both convergence speed and recognition accuracy. Accuracy of our compact parametric model in experiment on ImageNet and PASCAL samples provided by PASCAL3D+ based on simple Nearest Neighbor classifier is close to the result of 240 MB AlexNet trained with real images. Model trained on texture-less models which consumes less time for rendering and collecting outperforms the result of training with more textured models from ShapeNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Normal 4.8 MB model is stored by 8-bits reversible quantization as 2.9 MB with float min and max ranges. Quantization isn’t included in the training process.

References

  1. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google Scholar 

  2. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. CoRR abs/1408.5093 (2014)

    Google Scholar 

  3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation (2015)

    Google Scholar 

  4. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: Alexnet-level accuracy with 50\(\times \) fewer parameters and \(<{1}\) MB model size. CoRR abs/1602.07360 (2016)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  7. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning. CoRR abs/1602.07261 (2016)

    Google Scholar 

  8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015)

    Google Scholar 

  9. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose estimation. In: Proceedings of the IEEE CVPR (2015)

    Google Scholar 

  10. Pepik, B., Benenson, R., Ritschel, T., Schiele, B.: What is holding back convnets for detection? CoRR abs/1508.02844 (2015)

    Google Scholar 

  11. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: a benchmark for 3D object detection in the wild. In: IEEE WACV (2014)

    Google Scholar 

  12. Courbariaux, M., Bengio, Y.: Binarynet: training deep neural networks with weights and activations constrained to \(+1\) or \(-1\). Clinical Orthopaedics and Related Research (2016)

    Google Scholar 

  13. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations (2015)

    Google Scholar 

  14. Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of convolutional neural networks (2016)

    Google Scholar 

  15. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: The IEEE ICCV (2015)

    Google Scholar 

  16. Vedantham, A.: Guides. Flickr. Overview. (2013)

    Google Scholar 

  17. Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijayanarasimhan, S., Yagnik, J.: Fast, accurate detection of 100,000 object classes on a single machine. In: 2013 IEEE Conference on CVPR, pp. 1814–1821 (2013)

    Google Scholar 

  18. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  19. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale visual recognition challenge. CoRR abs/1409.0575 (2014)

    Google Scholar 

  20. Hinterstoisser, S., Benhimane, S., Lepetit, V., Fua, P., Navab, N.: Simultaneous recognition and homography extraction of local patches with a simple linear classifier. In: Proceedings of the BMVC, pp. 10.1–10.10. BMVA Press (2008)

    Google Scholar 

  21. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. CoRR abs/1404.4661 (2014)

    Google Scholar 

  22. Jolliffe, I.T.: Principal component analysis. Technometrics (2014)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. CoRR abs/1502.01852 (2015)

    Google Scholar 

  24. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015)

    Google Scholar 

  25. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: an information-rich 3D model repository. Technical report arXiv:1512.03012 [cs.GR], Stanford University – Princeton University – Toyota Technological Institute at Chicago (2015)

Download references

Acknowledgments

This work was partially sponsored by supported by the NSFC (National Natural Science Foundation of China) under Grant No. 61375031, No. 61573068, No. 61471048, and No. 61273217, the Fundamental Research Funds for the Central Universities under Grant No. 2014ZD03-01, This work was also supported by Beijing Nova Program, CCF-Tencent Open Research Fund, and the Program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yida Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Y., Cui, C., Zhou, X., Deng, W. (2017). ZigzagNet: Efficient Deep Learning for Real Object Recognition Based on 3D Models. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics