Nothing Special   »   [go: up one dir, main page]

Skip to main content

Angle-Based Preference Models in Multi-objective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10173))

Included in the following conference series:

Abstract

Solutions that provide a balance between different objective values in multi-objective optimization can be identified by assessing the curvature of the Pareto front. We analyze how methods based on angles have been utilized in the past for this task and propose a new angle-based measure—angle utility—that ranks points of the Pareto front irrespective of its shape or the number of objectives. An algorithm for finding angle utility optima is presented and a computational study shows that this algorithm is successful in identifying angle utility optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sourceforge.net/projects/jmetalbymarlonso/.

References

  1. Agrawal, R.B., Deb, K.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 1–15 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone \(\epsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_73

    Chapter  Google Scholar 

  4. Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective optimization: interactive and evolutionary approaches. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. Braun, M., Dengiz, T., Mauser, I., Schmeck, H.: Comparison of multi-objective evolutionary optimization in smart building scenarios. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 443–458. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_29

    Chapter  Google Scholar 

  6. Braun, M.A., Shukla, P.K., Schmeck, H.: Preference ranking schemes in multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 226–240. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19893-9_16

    Chapter  Google Scholar 

  7. Coello Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  8. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Info. 26, 30–45 (1996)

    Google Scholar 

  9. Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)

    Article  MathSciNet  Google Scholar 

  10. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Jain, L., Wu, X., Abraham, A., Jain, L., Goldberg, R. (eds.) Evol. Multiobjective Optim. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  13. Emmerich, M., Deutz, A., Kruisselbrink, J., Shukla, P.K.: Cone-based hypervolume indicators: construction, properties, and efficient computation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 111–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_12

    Chapter  Google Scholar 

  14. Emmerich, M.T., Deutz, A.H.: Test problems based on Lamé superspheres. In: Coello, C.A.C., Aguirre, A.H., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Greco, S., Ehrgott, M., Figueira, J. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2016)

    MATH  Google Scholar 

  16. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisciplinary Optim. 26(6), 369–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pareto, V.: Cours d’économie politique. Librairie Droz (1896)

    Google Scholar 

  18. Shukla, P.K., Braun, M.A., Schmeck, H.: Theory and algorithms for finding knees. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 156–170. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_15

    Chapter  Google Scholar 

  19. Sudeng, S., Wattanapongsakorn, N.: Adaptive geometric angle-based algorithm with independent objective biasing for pruning pareto-optimal solutions. In: 2013 Science and Information Conference (SAI), pp. 514–523 (2013)

    Google Scholar 

  20. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlon Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Braun, M., Shukla, P., Schmeck, H. (2017). Angle-Based Preference Models in Multi-objective Optimization. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54157-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54156-3

  • Online ISBN: 978-3-319-54157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics