Abstract
Solutions that provide a balance between different objective values in multi-objective optimization can be identified by assessing the curvature of the Pareto front. We analyze how methods based on angles have been utilized in the past for this task and propose a new angle-based measure—angle utility—that ranks points of the Pareto front irrespective of its shape or the number of objectives. An algorithm for finding angle utility optima is presented and a computational study shows that this algorithm is successful in identifying angle utility optima.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R.B., Deb, K.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 1–15 (1994)
Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone \(\epsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011)
Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_73
Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective optimization: interactive and evolutionary approaches. Springer, Heidelberg (2008)
Braun, M., Dengiz, T., Mauser, I., Schmeck, H.: Comparison of multi-objective evolutionary optimization in smart building scenarios. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 443–458. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31204-0_29
Braun, M.A., Shukla, P.K., Schmeck, H.: Preference ranking schemes in multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 226–240. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19893-9_16
Coello Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)
Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Info. 26, 30–45 (1996)
Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Jain, L., Wu, X., Abraham, A., Jain, L., Goldberg, R. (eds.) Evol. Multiobjective Optim. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)
Emmerich, M., Deutz, A., Kruisselbrink, J., Shukla, P.K.: Cone-based hypervolume indicators: construction, properties, and efficient computation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 111–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_12
Emmerich, M.T., Deutz, A.H.: Test problems based on Lamé superspheres. In: Coello, C.A.C., Aguirre, A.H., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)
Greco, S., Ehrgott, M., Figueira, J. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2016)
Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisciplinary Optim. 26(6), 369–395 (2004)
Pareto, V.: Cours d’économie politique. Librairie Droz (1896)
Shukla, P.K., Braun, M.A., Schmeck, H.: Theory and algorithms for finding knees. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 156–170. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37140-0_15
Sudeng, S., Wattanapongsakorn, N.: Adaptive geometric angle-based algorithm with independent objective biasing for pruning pareto-optimal solutions. In: 2013 Science and Information Conference (SAI), pp. 514–523 (2013)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Braun, M., Shukla, P., Schmeck, H. (2017). Angle-Based Preference Models in Multi-objective Optimization. In: Trautmann, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2017. Lecture Notes in Computer Science(), vol 10173. Springer, Cham. https://doi.org/10.1007/978-3-319-54157-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-54157-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54156-3
Online ISBN: 978-3-319-54157-0
eBook Packages: Computer ScienceComputer Science (R0)