Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Scheme for Molecular Computation of Maximum Likelihood Estimators for Log-Linear Models

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9818))

Included in the following conference series:

Abstract

We propose a novel molecular computing scheme for statistical inference. We focus on the much-studied statistical inference problem of computing maximum likelihood estimators for log-linear models. Our scheme takes log-linear models to reaction systems, and the observed data to initial conditions, so that the corresponding equilibrium of each reaction system encodes the corresponding maximum likelihood estimator. The main idea is to exploit the coincidence between thermodynamic entropy and statistical entropy. We map a Maximum Entropy characterization of the maximum likelihood estimator onto a Maximum Entropy characterization of the equilibrium concentrations for the reaction system. This allows for an efficient encoding of the problem, and reveals that reaction networks are superbly suited to statistical inference tasks. Such a scheme may also provide a template to understanding how in vivo biochemical signaling pathways integrate extensive information about their environment and history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is more common in statistics and statistical mechanics literature to write \(\theta _1 = \mathrm {e}^{-E_1}\) and \(\theta _2=\mathrm {e}^{-E_2}\) in terms of “energies” \(E_1, E_2\) so that \(P[X_2\mid E_1, E_2] \propto \mathrm {e}^{-E_1-E_2}\) for example.

References

  1. Agresti, A.: Categorical Data Analysis. Wiley, New York (2013)

    MATH  Google Scholar 

  2. Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  4. Bishop, Y.M.M., Feinberg, S., Holland, P.: Discrete Multivariant Analysis. The MIT Press, Cambridge (1975)

    Google Scholar 

  5. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing algebraic functions with biochemical reaction networks. Artif. Life 15(1), 5–19 (2009)

    Article  Google Scholar 

  6. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen, R.: Log-Linear Models and Logistic Regression, vol. 168. Springer, New York (1997)

    MATH  Google Scholar 

  9. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009). In Memoriam Karin Gatermann

    Article  MathSciNet  MATH  Google Scholar 

  10. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation in living cells. Nature 497(7451), 619–623 (2013)

    Article  Google Scholar 

  11. Doyle, J., Csete, M.: Rules of engagement. Nature 446(7138), 860–860 (2007)

    Article  Google Scholar 

  12. Fienberg, S.E., Rinaldo, A., et al.: Maximum likelihood estimation in log-linear models. Ann. Stat. 40(2), 996–1023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73, 2962–2982 (2011). doi:10.1007/s11538-011-9655-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attractor conjecture. In preparation

    Google Scholar 

  15. Horn, F.J.M.: The dynamics of open reaction systems. In: Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry. Proceedings of the SIAM-AMS Symposium Applied Mathematics, vol. 8, New York (1974)

    Google Scholar 

  16. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  17. Miller, E.: Theory and applications of lattice point methods for binomial ideals. In: Fløystad, G., Johnsen, T., Knutsen, A.L. (eds.) Combinatorial Aspects of Commutative Algebra and Algebraic Geometry. Abel Symposia, vol. 6, pp. 99–154. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)

    Google Scholar 

  20. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)

    Article  Google Scholar 

  21. Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology. Algebraic Statistics for Computational Biology, vol. 13. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  22. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface (2011)

    Google Scholar 

  24. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  25. Shapiro, E., Benenson, Y.: Bringing DNA computers to life. Sci. Am. 294(5), 44–51 (2006)

    Article  Google Scholar 

  26. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)

    Article  Google Scholar 

  27. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  28. Sontag, E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control 46, 1028–1047 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thomson, M., Gunawardena, J.: Unlimited multistability in multisite phosphorylation systems. Nature 460(7252), 274–277 (2009)

    Article  Google Scholar 

  30. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opin. Cell Biol. 15(2), 221–231 (2003)

    Article  Google Scholar 

  31. Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Nick S. Jones, Anne Shiu, Abhishek Behera, Ezra Miller, Thomas Ouldridge, Gheorghe Craciun, and Bence Melykuti for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gopalkrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gopalkrishnan, M. (2016). A Scheme for Molecular Computation of Maximum Likelihood Estimators for Log-Linear Models. In: Rondelez, Y., Woods, D. (eds) DNA Computing and Molecular Programming. DNA 2016. Lecture Notes in Computer Science(), vol 9818. Springer, Cham. https://doi.org/10.1007/978-3-319-43994-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43994-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43993-8

  • Online ISBN: 978-3-319-43994-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics