Abstract
We propose a novel molecular computing scheme for statistical inference. We focus on the much-studied statistical inference problem of computing maximum likelihood estimators for log-linear models. Our scheme takes log-linear models to reaction systems, and the observed data to initial conditions, so that the corresponding equilibrium of each reaction system encodes the corresponding maximum likelihood estimator. The main idea is to exploit the coincidence between thermodynamic entropy and statistical entropy. We map a Maximum Entropy characterization of the maximum likelihood estimator onto a Maximum Entropy characterization of the equilibrium concentrations for the reaction system. This allows for an efficient encoding of the problem, and reveals that reaction networks are superbly suited to statistical inference tasks. Such a scheme may also provide a template to understanding how in vivo biochemical signaling pathways integrate extensive information about their environment and history.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is more common in statistics and statistical mechanics literature to write \(\theta _1 = \mathrm {e}^{-E_1}\) and \(\theta _2=\mathrm {e}^{-E_2}\) in terms of “energies” \(E_1, E_2\) so that \(P[X_2\mid E_1, E_2] \propto \mathrm {e}^{-E_1-E_2}\) for example.
References
Agresti, A.: Categorical Data Analysis. Wiley, New York (2013)
Angeli, D., De Leenheer, P., Sontag, E.D.: A Petri net approach to the study of persistence in chemical reaction networks. Math. Biosci. 210(2), 598–618 (2007)
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)
Bishop, Y.M.M., Feinberg, S., Holland, P.: Discrete Multivariant Analysis. The MIT Press, Cambridge (1975)
Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing algebraic functions with biochemical reaction networks. Artif. Life 15(1), 5–19 (2009)
Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)
Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)
Christensen, R.: Log-Linear Models and Logistic Regression, vol. 168. Springer, New York (1997)
Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symb. Comput. 44(11), 1551–1565 (2009). In Memoriam Karin Gatermann
Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation in living cells. Nature 497(7451), 619–623 (2013)
Doyle, J., Csete, M.: Rules of engagement. Nature 446(7138), 860–860 (2007)
Fienberg, S.E., Rinaldo, A., et al.: Maximum likelihood estimation in log-linear models. Ann. Stat. 40(2), 996–1023 (2012)
Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73, 2962–2982 (2011). doi:10.1007/s11538-011-9655-3
Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attractor conjecture. In preparation
Horn, F.J.M.: The dynamics of open reaction systems. In: Mathematical Aspects of Chemical and Biochemical Problems and Quantum Chemistry. Proceedings of the SIAM-AMS Symposium Applied Mathematics, vol. 8, New York (1974)
Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)
Miller, E.: Theory and applications of lattice point methods for binomial ideals. In: Fløystad, G., Johnsen, T., Knutsen, A.L. (eds.) Combinatorial Aspects of Commutative Algebra and Algebraic Geometry. Abel Symposia, vol. 6, pp. 99–154. Springer, Heidelberg (2011)
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)
Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)
Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5(4), 252–260 (2011)
Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology. Algebraic Statistics for Computational Biology, vol. 13. Cambridge University Press, New York (2005)
Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)
Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface (2011)
Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)
Shapiro, E., Benenson, Y.: Bringing DNA computers to life. Sci. Am. 294(5), 44–51 (2006)
Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010)
Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)
Sontag, E.D.: Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Trans. Autom. Control 46, 1028–1047 (2001)
Thomson, M., Gunawardena, J.: Unlimited multistability in multisite phosphorylation systems. Nature 460(7252), 274–277 (2009)
Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opin. Cell Biol. 15(2), 221–231 (2003)
Yordanov, B., Kim, J., Petersen, R.L., Shudy, A., Kulkarni, V.V., Phillips, A.: Computational design of nucleic acid feedback control circuits. ACS Synth. Biol. 3(8), 600–616 (2014)
Acknowledgements
I thank Nick S. Jones, Anne Shiu, Abhishek Behera, Ezra Miller, Thomas Ouldridge, Gheorghe Craciun, and Bence Melykuti for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Gopalkrishnan, M. (2016). A Scheme for Molecular Computation of Maximum Likelihood Estimators for Log-Linear Models. In: Rondelez, Y., Woods, D. (eds) DNA Computing and Molecular Programming. DNA 2016. Lecture Notes in Computer Science(), vol 9818. Springer, Cham. https://doi.org/10.1007/978-3-319-43994-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-43994-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43993-8
Online ISBN: 978-3-319-43994-5
eBook Packages: Computer ScienceComputer Science (R0)