Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bad Primes in Computational Algebraic Geometry

  • Conference paper
  • First Online:
Mathematical Software – ICMS 2016 (ICMS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9725))

Included in the following conference series:

Abstract

Computations over the rational numbers often suffer from intermediate coefficient swell. One solution to this problem is to apply the given algorithm modulo a number of primes and then lift the modular results to the rationals. This method is guaranteed to work if we use a sufficiently large set of good primes. In many applications, however, there is no efficient way of excluding bad primes. In this note, we describe a technique for rational reconstruction which will nevertheless return the correct result, provided the number of good primes in the selected set of primes is large enough. We give a number of illustrating examples which are implemented using the computer algebra system Singular and the programming language Julia. We discuss applications of our technique in computational algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See http://julialang.org/.

References

  1. Arbarello, E., Ciliberto, C.: Adjoint hypersurfaces to curves in \(\mathbb{P}^{r}\) following Petri. In: Commutative Algebra. Lecture Notes in Pure and Applied Mathematics, vol. 84, pp. 1–21, Dekker, New York (1983)

    Google Scholar 

  2. Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MATH  Google Scholar 

  3. Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational reconstruction. Math. Comp. 84, 3013–3027 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Böhm, J., Decker, W., Laplagne, S., Pfister, G., Steenpaß, A., Steidel, S.: Parallel algorithms for normalization. J. Symb. Comp. 51, 99–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böhm, J., Decker, W., Pfister, G., Laplagne, S.: Local to global algorithms for the Gorenstein adjoint ideal of a curve. Preprint (2015). arXiv:1505.05040

  6. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 - A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de

  7. Greuel, G.-M., Laplagne, S., Seelisch, S.: Normalization of rings. J. Symb. Comp. 45(9), 887–901 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kornerup, P., Gregory, R.T.: Mapping integers and Hensel codes onto Farey fractions. BIT 23, 9–20 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mnuk, M.: An algebraic approach to computing adjoint curves. J. Symb. Comput. 23(2–3), 229–240 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Hoeij, M.: An algorithm for computing an integral basis in an algebraic function field. J. Symb. Comput. 18(4), 353–363 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Böhm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Böhm, J., Decker, W., Fieker, C., Laplagne, S., Pfister, G. (2016). Bad Primes in Computational Algebraic Geometry. In: Greuel, GM., Koch, T., Paule, P., Sommese, A. (eds) Mathematical Software – ICMS 2016. ICMS 2016. Lecture Notes in Computer Science(), vol 9725. Springer, Cham. https://doi.org/10.1007/978-3-319-42432-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42432-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42431-6

  • Online ISBN: 978-3-319-42432-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics